Master thesis

Analyzing post-quantum cryptographic schemes with respect to side channel and fault attacks

1. General information
Once quantum computers exist, we need post-quantum replacements for the currently used public-key cryptographic schemes. Five families of post-quantum cryptography (PQC) exist: Lattice-based cryptography, hash-based cryptography, code-based cryptography, multivariate cryptography, and isogeny-based cryptography. When it comes to implementing post-quantum cryptography and using it in practical applications, the mathematical security of the schemes is not sufficient, but the physical security of the schemes and their implementations, i.e., their resistance towards side channel and fault attacks, has to be ensured as well. Since most PQC schemes have been developed only recently, not much effort has been put yet into their physical security.

2. Goals
Analysis of relevant PQC schemes with respect to their vulnerability to side channel and fault attacks, development of countermeasures. In general, any aspect of physical security can be covered in a master thesis, and I’m interested in all five classes of PQC. I have some concrete ideas for thesis topics in mind, but I’m open for your ideas.

3. Required skills
The required skills are:
- Course 'Einführung in die Kryptographie' and, ideally, 'Post-Quantum Cryptography'
- Good mathematical skills
- Good English skills
- Good programming skills (depending on the concrete topic)
- The thesis should be written in English using LaTeX

4. Contact
If you are interested, please contact: jkraemer@cdc.informatik.tu-darmstadt.de
Dr. Juliane Krämer
S2|20 (CYSEC building)
January 9, 2020