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Abstract—Critical systems that integrate software components (e.g., from third-parties) need to address the risk of residual software
defects in these components. Software fault injection is an experimental solution to gauge such risk. Many error models have been
proposed for emulating faulty components, such as by injecting error codes and exceptions, or by corrupting data with bit-flips,
boundary values, and random values. Even if these error models have been able to find breaches in fragile systems, it is unclear
whether these errors are in fact representative of software faults. To pursue this open question, we propose a methodology to analyze
how software faults in C/C++ software components turn into errors at components’ interfaces (interface error propagation), and present
an experimental analysis on what, where, and when to inject interface errors. The results point out that the traditional error models, as
used so far, do not accurately emulate software faults, but that richer interface errors need to be injected, by: injecting both fail-stop
behaviors and data corruptions; targeting larger amounts of corrupted data structures; emulating silent data corruptions not signaled by
the component; combining bit-flips, boundary values, and data perturbations.

Index Terms—Dependability; Fault Injection; Software Fault Tolerance; Error Propagation; Software Components; Error Models
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1 INTRODUCTION

The reuse of software components, either legacy or off-
the-shelf (OTS) from third-parties, is a fundamental practice
for cost-efficient software development, even in critical sys-
tems [1], [2], [3]. However, reused components also bring
the risk of introducing more software faults (i.e., bugs), since
their internal quality and reliability are unknown [4], [5],
and since they are used in a new context unanticipated by
their developers [6], [7]. Software fault injection is a solution
to gauge the risk of unreliable components, by emulating
software faults in the components to assess the fault-tolerant
behavior of the overall system [8], [9], [10].

The injection of realistic component faults is a key, yet
open problem to obtain meaningful results from software
fault injection. Many existing techniques are limited to sim-
ple forms of injections, such as by forcing process crashes or
API call failures signaled with an error code or exception
[10]. However, these approaches only address a limited
part of the problem: in fact, empirical studies in open-
source and commercial software suggest that software faults
are more subtle and virulent than assumed by these fault
injection techniques. Tan et al. [11] analyzed 2k+ bugs in
three large, popular open-source projects (the Linux kernel,
the Mozilla suite, and the Apache web server) and found
that the dominant share was represented by semantic bugs,
i.e., “Inconsistencies with the requirements or the programmers’
intention” (excluding synchronization and memory manage-
ment bugs), such as missing corner cases and features in an
algorithm: in most of the cases, these faults do not simply
lead to crashes but impact on the functional correctness
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of the software [11, sec. 5]. Other empirical studies, based
on failure data collected from operational systems [9], [12],
emphasize that the impact of software faults is not limited to
unavailability (e.g., the system stops and explicitly signals
the failure), but also affects semantic correctness (e.g., data
errors, undefined protocol states, etc.).

Therefore, to inject a richer set of realistic software faults,
the current state-of-the-art techniques adopt code mutation
[13], [14]. This approach has been traditionally used for
mutation testing [15], whose goal is to assess that test cases
are able to cover and trigger the buggy statements of a
program. However, code mutation is inefficient for the pur-
poses of software fault injection: mutants are often dormant
(i.e., they are not triggered and do not change the behavior
of the injected component), and thus do not exercise fault-
tolerance mechanisms [9], [16]. Moreover, OTS components
(which are the main target of risk assessment experiments
using fault injection) are usually only distributed as binary
code, which imposes technical limitations to code mutation
(e.g., at precisely identifying statement boundaries in the
presence of compiler optimizations) [17], [18].

To overcome these limitations, this paper addresses the
problem from the perspective of the interface data that are
used by software components to interact with each other.
Examples are data returned from API calls and shared
global variables, and any other data pointed by them. Inter-
face data represent the component “surface” that is exposed
to users: as far as a software system and its fault-tolerance
mechanisms are concerned, a fault inside a component prop-
agates its effects through the unavailability or corruption of
interface data. We name these effects as interface errors. Our
driving idea is that these data represent a favorable target
for injection: the direct injection of interface errors (i.e.,
replacing the original interface data with incorrect values)
can emulate software faults in a more efficient way than
code mutations, which, instead, generate interface errors as
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an indirect by-product of mutants. Injecting interface errors
avoids wasting experiments’ time on dormant mutations,
and the technical limitations of binary code mutation when
the source code is lacking.

This paper presents a new experimental methodology
and techniques for analyzing, in quantitative terms, how
software faults turn into interface errors in C/C++ compo-
nents. The methodology injects software faults in a compo-
nent, traces the evolution of interface data at run-time, and
identifies interface errors by looking for deviations of the
fault-injected execution from the fault-free one (i.e., interface
errors). Then, the methodology characterizes the interface
errors in terms of extent, signaling by detection mechanisms,
and recurring patterns. Our focus is on C/C++ software, as
these languages are predominant in safety-critical control
systems and systems software. Flight control software, for
instance, is commonly implemented in these languages [19],
[20], [21], [22], as is automotive software, for which fault
injection is among the test techniques recommended by the
safety standard ISO 26262 [23], [24].

We applied this methodology on C and C++ compo-
nents from a set of 10 popular benchmark programs from
different application domains, in order to get insights on
actual interface errors and how to inject them. To this aim,
we compared interface errors from these components with
respect to existing software error models (such as, injecting
boundary and out-of-range values, or bit-flipping them),
which previous research derived either from conventional
wisdom [4] or from hardware fault models [25], [26]. From
the experiments, we found that these error models are not
suitable for software faults, and we identified guidelines
for defining more accurate interface error models. Relevant
findings include:

1) Interface errors are a frequent effect of software faults in
software components, as they occurred in 31:8% of all
experiments (55:6% of experiments not including dor-
mant faults). Thus, injecting simple fail-stop behaviors
(such as component crashes) is not sufficient to emulate
the effects caused by software faults;

2) Interface errors corrupt a significant share of interface
data (up to several MBs of interface data in our experi-
ments). Thus, software faults cannot be adequately em-
ulated with traditional, hardware-oriented error mod-
els, which are limited to corrupting few bits or bytes.
Instead, error injection should corrupt more extensive
areas of interface data;

3) Interface errors are often silent (45:8% of experiments)
as they are not explicitly signaled by the faulty com-
ponent (e.g., through exceptions or error codes). More-
over, interface errors also occur even when the compo-
nent had raised exceptions/return codes (in 16:0% of
our experiments). Thus, the simple injection of excep-
tions or error codes does not suffice to represent the
impact of faulty software components, but it must be
complemented with the injection of interface errors;

4) Interface errors are not random, but tend to follow
regular patterns. We found that the interface errors
follow some of the error types traditionally adopted
by error injection techniques (e.g., boundary values);
however, other traditional error types (e.g., bit-flips)
seldom occur. Moreover, these types do not suffice to

represent interface errors, but need to be complemented
with the injection of data perturbations, as most of the
corrupted data deviated from the correct ones by a
small offset.

The paper is structured as follows. Section 2 reviews
related work on error propagation and fault injection. Sec-
tion 3 poses the research questions for this study. Section 4
describes the proposed methodology. Section 5 presents the
experimental analysis. Section 6 discusses the threats to
validity. Section 7 concludes the paper with a discussion
of the results and perspectives on future work.

2 RELATED WORK

Previous work on the reliability of component-based sys-
tems can be divided into modelistic and experimental ap-
proaches. The modelistic approaches analyze the architecture
of component-based systems, based on the probability of
failures of the individual components [27]. They are aimed
to identify the components with the highest impact on
reliability, in order to focus on them more engineering and
testing efforts, such as by introducing executable assertions
and wrapper (i.e., sanity checks to detect and/or discard
problematic components’ inputs/outputs) and other error
detection and recovery mechanisms. Typically, modelistic
approaches use Markov models (e.g., where the states repre-
sent the modules or stages that can be reached by the control
flow), or reuse existing design specifications in UML [28]
and AADL [29] diagrams (annotated with failure probabili-
ties) and automatically convert them to stochastic models.

A critical restriction of early models has been the as-
sumption of independence of software components’ failures:
thus, the latest reliability models have been incorporating
probabilities of error propagation across components [30],
[31]. Popic et al. [32] derived error propagation probabili-
ties from UML diagrams (sequence, use case, deployment).
Cortellessa and Grassi [33] and Mohamed and Zulkernine
[34] further refined the model, by considering that the errors
can be “masked” along propagation paths and not lead to
a system failure; and evaluate the sensitivity of reliability
with respect to the error propagation probability. Later work
incorporated omission and performance failures [35], and
generalized to components with multiple failure modes [36].

All these studies remarked that experimental ap-
proaches, based on fault injection, have a critical role for
applying architecture-based models in practice, such as to
derive error propagation probabilities and the coverage of
error detection and recovery [37], and to assess the accuracy
of reliability models [38]. Hiller et al. [39], [40] developed
an experimental fault injection framework to analyze error
propagation across components, by applying corruptions
on component inputs and computing metrics for guiding
design trade-offs, including: the probability of propagation
from system inputs to component inputs; from component inputs
to its outputs; and from component outputs to system outputs.
Voas et al. [8] proposed a certification scheme for OTS compo-
nents, which evaluates the ability of a system to survive to
residual faults in an OTS component by injecting errors at
component interfaces.

However, a fundamental problem for applying these
approaches is to inject corruptions that are representative
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of software faults. The early work focused on corrupting
program code and its internal data (rather than injecting at
component interfaces), by bit-flipping the contents of individ-
ual bits or bytes, with the assumption that these errors were
representative of both hardware and software faults [9],
[25], [26]. However, the experimental analysis of Madeira
et al. [41] showed that bit-flipping program internals is only
suitable for emulating the simplest classes of software faults,
since more elaborate corruptions are needed to emulate
faults that span over several statements. Thus, they devel-
oped G-SWFIT (Generic Software Fault Injection Technique)
[14] to inject code mutations, based on the most common
programming bugs found in hundreds of bug-fixes from
open-source software projects. Unfortunately, the utility of
code mutation is limited by the problems of inefficiency (i.e.,
dormant injections) and of the accuracy of mutations if the
source code of the target is not available [18].

The injection of interface errors is often considered a more
viable alternative for emulating components’ faults. The
existing approaches differ with respect to the error models
(i.e., the error patterns that are injected), which can find
different robustness problems and have different cost in
terms of efficiency (e.g., number of fault injection experi-
ments generated by the error model) and implementation
complexity (e.g., human effort to develop an injector) [42],
[43]. The error models, and related tools, include:
Bit-flipping and fuzzing. Examples are the studies by Bar-
ton et al. [44] and Arlat et al. [5], which respectively injected
random values (fuzzing) and bit-flips on the input parame-
ters of OS system utilities and system calls, to evaluate their
robustness against faulty users and applications.
Data-type based. Similarly, BALLISTA [4] aimed at eval-
uating the error handling of POSIX system calls with re-
spect to invalid parameters, by adopting a data-type based
approach: for each of the 20 data types from the C language
and the POSIX standard (such as size_t, mode_t, etc.)
used for the input parameters of 233 POSIX system calls,
BALLISTA provides a pool of invalid values to generate
test cases. The invalid values were derived from the testing
literature [45] or based on personal experience, includ-
ing boundary and special values such as zero, negative
one, maximum/minimum representable values, pointers to
nonexistent memory, lengths near virtual memory page size,
and pointers to heap-allocated memory.
Data perturbations. The perturbation analysis technique by
Voas et al. [46], [47] corrupts the internal variables of a
program statement, to identify which statements are most
likely to propagate errors to the rest of the program. The
variable is overwritten with a corrupted value that is close
to the original one (e.g., following a uniform distribution
whose mean is the original value).
Erroneous return values. The FIG and LFI tools [48], [49]
inject error codes that may be returned from system libraries
to user applications, for testing error handling code. For ex-
ample, these error codes can be returned in case of excessive
load (e.g., failed memory allocation), hardware faults (e.g.,
disk I/O errors) and software faults (e.g., the system call
detects that it has been invoked with incorrect parameters).

These studies recognized that defining generically-
applicable error models for interface error injection as an

important, yet open research problem [4], [5]. Thus, Moraes
et al. [50] and Jarboui et al. [51] investigated the represen-
tativeness of these interface error models, in the context of
three complex components (the Linux kernel, an embedded
software, and an object-oriented DBMS). Each of them per-
formed two distinct experimental campaigns, by injecting
(i) error injections at component’s interfaces (bit-flips, and
boundary and invalid values, such as NULL pointers), and
(ii) faults injected inside the component (respectively, using
code mutations [50] and known bugs [51]). These studies
found a gap between interface injections and component-
internal injections, in terms of failure modes exhibited by
the target (e.g., the system exhibits different percentage of
crashes or invalid application results). For example, inter-
face injections on Linux system calls (i.e., at a high-level
layer of the OS architecture) were not representative of faults
inside the Linux device drivers (i.e., at a low-level layer of
the OS architecture) [51]. These previous studies [50], [51]
motivate us to reduce this gap, by establishing a relationship
between component-internal faults and the interface errors
caused by them, in order to provide guidance for more
representative interface error injections.

In this work, we develop a new methodology for ana-
lyzing error propagation in software components. Previous
tools of this kind were presented by Kao et al. [52] and
Chandra and Chen [53]. FINE [52] inserted probes within
SunOS to keep track of key kernel variables and function
calls, in order to detect symptoms of error propagation
inside the OS, to be used in a Markov reward model
of OS performance under faults. Chandra and Chen [53]
used a virtual machine environment (SimOS) to analyze the
effectiveness of the transaction mechanisms of the Postgres
DBMS at preventing error propagation to stable storage,
by evaluating the amount of corrupted memory words, the
fault latency (i.e., how long the process runs after the fault
is activated), and occurrences of fail-stop violations (i.e., the
DBMS writes wrong data on storage before stopping). Com-
pared to these studies, this paper presents a methodology
that: (i) does not rely on experts’ knowledge to insert probes
in “important” variables and functions, as in FINE [52];
(ii) pinpoints corruptions that specifically affect interface
data, while SimOS [53] analyzes the target as a “black-
box” and does not distinguish between interface data and
internal component data (where only the former is visible
from outside the component). Moreover, compared to our
previous work [54], the methodology leverages debugging
mechanisms to obtain more information about corruptions,
allowing us to investigate more in depth our initial re-
search questions (e.g., about the extent and the signaling
of corruptions) and to address new ones (e.g., recurring
patterns in interface corruptions). Finally, this work analyzes
a larger amount of programs (10) and faults (10k+) than any
previous work on error propagation.

3 PROBLEM STATEMENT

In a broad sense, this paper investigates the relationship be-
tween faults in software components, and the corresponding
errors at the interfaces of the component. An understanding
of this relationship allows the definition of more efficient
strategies for software fault injection by replacing code
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Fig. 1: Error propagation through interface errors.

mutations, which are difficult to trigger and to inject in OTS
software, with equivalent interface error injections. In the
following, we provide definitions and derive more specific
research questions around this problem.

3.1 Overview of interface error propagation
The general relationship between faults, errors, and failures
is showed in Figure 1. Our usage of these terms follows
the taxonomy of Avizienis et al. [55]. The target component,
which is a part of a broader system, is a software element
that is assumed to be faulty in a software fault injection ex-
periment. The target component provides an interface to an
user program, in the form of a set of API functions and related
data structures. The interface data consist of any data that
is visible both to the target and user components when an
API function is invoked (step 1). The API function provides
both new data through the return value of the function, and
updates the data structures that are passed as input/output
parameters by the caller; these data include both primitive
and complex types, and any other data pointed by the
input/output parameters. During this invocation, software
faults are triggered (step 2) and result in errors inside the
component (e.g., corruption of internal component data).
When the invocation terminates (step 3), the interface data
can be in a corrupted state, as an effect of the propagation
of such internal errors, thus producing interface errors. The
software can then experience a failure (e.g., a crash or an
incorrect output) as a result of the corruption.

Fig. 2 to 4 show the possible propagation paths for in-
terface errors in the case of functions exposed by a software
component (e.g., library functions and classes) and invoked
by a (user) program. The examples are based on C/C++,
which is the focus of this work, but the general approach
applies for any type of software composition where compo-
nents exchange data through shared data structures.

The first scenario (Figure 2) consists in the corruption
of a data structure that the component (À) dynamically
allocates on the heap. Due to a programmer’s omission, the
data are not initialized as the user program would expect.
The corrupted data structure represents an interface error, as
it survives the scope of the component invocation (`) and
is returned to the user program through a pointer return
value (e.g., allocated on the stack, depending on calling
conventions).

Figure 3 depicts a similar case, in which a data struc-
ture is allocated by the user program (À), passed to the
component through a pointer interface parameter, and cor-
rupted during the component invocation due to an in-
correct boolean expression (`). The figure emphasizes the

struct test * component_function() {

struct test * p = new struct test;
...
p->val = 0;
...
return p;

}

void user() {
...

q = component_function();
...

}
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Fig. 2: Interface error on a component-allocated area.
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void component_function
(struct test * p) {

...
bool b = expr faulty_expr;
...
if(b)

p->val = 0;
...

}

void user() {

...
struct test * q = new struct test;
component_function(q);
...

}
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Fig. 3: Interface error on a user-allocated area.

difference between an internal error (i.e., the b variable
internal to the component function) and an interface error
(i.e., the struct pointed by p). The erroneous struct value
represents an interface error, as it propagates to the user
program through an input-output parameter of the com-
ponent. In general, we are considering data (on the heap,
stack or global memory areas) that are reachable outside
the component by following pointers in the scope of the
user program. Instead, we are not considering components’
local variables or heap memory areas not reachable (neither
directly through interface parameters, nor indirectly) by the
user program.

void component_function
(struct test * p) {

...
p->string = new char[20];
strcpy(p->string, “test”);
...

}

void user() {
...
struct test * q = new struct test;

component_function(q);
...

}
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Fig. 4: Interface error on an indirectly-reachable area.

Even if interface parameters are not directly corrupted,
error propagation can still indirectly affect the user program
by corrupting data that is pointed to by an interface pa-
rameter, such as in the case of complex data structures like
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trees and linked lists. This is the case in Figure 4, where a
user-allocated data structure (À) is linked to a component-
allocated string (` and ´) that can get corrupted. A corrup-
tion of the linked string can be considered an interface error,
as this area is reachable by the user program. This applies
in general to any memory area reachable from an interface
parameter through an arbitrary number of pointers.

3.2 Research questions

From a practical perspective, the injection of errors consists
in corrupting the data of a program, in order to emulate the
effects that would be caused by software faults. The purpose
of our the proposed methodology and experimental analysis
of this paper is to guide the injection of these corruptions,
by pursuing the following research questions.

The first research question is a prerequisite for motivat-
ing further investigations of interface errors. As discussed
in the introduction of this paper, software errors (i.e., the
effects of software faults [55]) range from simple (i.e., the
errors are explicitly signaled by the faulty component, and
can be managed with exception handlers) to more subtle
ones (i.e., the component does not stop in the case of failure,
and silently returns corrupted data to the user). In the for-
mer case, faults can be emulated with existing error injection
approaches; however, we hypothesize that the latter case
is quite frequent, which would require more sophisticated
approaches for interface error injection. We experimentally
investigate this aspect by posing the following question:

(RQ1) Are interface data corruptions a frequent effect of faulty
software components?

After establishing the relevance of interface errors, the
following three research questions aim to characterize these
errors more precisely, in order to guide the injection of
interface errors. This aim requires to define an error model
that the injected corruptions should follow. In the fault
injection literature, such models are defined in terms of
what to inject (i.e., which corrupted data should replace
the correct ones), where to inject (i.e., which data should be
targeted by the injection), and when to inject (i.e., how much
time the injection persists during an experiment) [9], [41],
[56]. For example, the bit-flip (that is, the transient inversion
of the content of a single bit in memory or CPU registers)
is a popular fault model for hardware faults (i.e., CPU and
memory faults, such as electromagnetic interferences), since
simulation studies [57], [58] have shown that bit-flips are
the most frequent effect of these faults. The bit-flip model
dramatically relieved the cost and the complexity of hard-
ware fault injection, since bit-flips can be injected through
software-implemented fault injection techniques (SWIFI),
instead of using more cumbersome physical injection tech-
niques [16], [59]. Establishing similar patterns for software
interface errors would ease the problem of emulating soft-
ware faults (e.g., to avoid the dormancy of code mutations,
and the lack of source code for OTS components).

The next research question is about the extent of errors,
both over space (i.e., the amount the data that are affected
by corruptions) and time (i.e., how the corruptions are

spread over the execution period of the target software). For
example, in the case of traditional hardware fault models
(that have also been adopted for emulating software faults
[25], [26]), single or few bit-flips with a transient timing were
used to emulate electromagnetic interferences; and fixed bits
(stuck-ats) with a persistent timing to emulate manufactur-
ing defects of integrated circuits [37]. Similarly, knowing the
extent of interface errors is the first information needed for
defining how many corruptions an injector should introduce
in the target system, and when it should introduce them.

(RQ2) What is the extent of interface errors, in terms of
amount and timing?

Another important (but not yet investigated) aspect for
modeling interface errors is represented by error signaling
mechanisms used by software interfaces. In general, error
signaling is a common pattern for architecting fault-tolerant
systems, in which components at a lower-level of the ar-
chitecture pass information about faults to the upper-level
components, in order to handle faults at the most convenient
layer in the architecture (e.g., by masking the fault, or grace-
fully propagating it to users as a system failure) [4], [60]. In
the case of software systems, components use error signal-
ing, such as special return values and exceptions, to notify
of faults either in the hardware (such as, the unavailability
of a network connection, resource exhaustion, etc.) or in the
software (such as the violation of a data invariant). Since
fault-tolerance mechanisms are typically designed around
error signaling, a key question is whether the occurrence of
interface errors can be detected through error signals. If this
is true, it would suffice to test fault-tolerance mechanisms
by forcing error codes and exceptions at API calls [48], [49].
Instead, if faulty components are silent on interface errors,
then the fault-tolerance mechanisms should not rely on
them, and they should also be tested by corrupting interface
data without injecting any error signal.

(RQ3) Do faulty components signal interface errors, such as
through error codes or exceptions?

Finally, the last aspect is about how corrupted interface
data deviate from the correct interface data. Many corrup-
tion patterns have been hypothesized and proposed for
modeling software errors, including: the traditional bit-flips
and stuck-ats also used for hardware [25], [26]; replacing
values with boundary or special values from the same do-
main (e.g., the maximum value of a numeric range, or NULL
pointers) [4]; or replacing the original values with entirely
random ones (e.g., as in fuzz testing) [44]. However, even
if it can be argued that these error patterns can originate
from software faults, and that they have been useful to find
breaches in fragile software interfaces [42], [43], no previous
study has yet provided quantitative evidence that these
errors are in fact the likely effect of software faults (and
thus worth to be tested by error injection). Therefore, we
investigate if, and how often, any of these error patterns are
actually caused by software faults, and whether they could
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be adopted for error injection purposes.

(RQ4) Which interface error patterns are produced by faulty
software components?

4 METHODOLOGY

Our experimental methodology analyzes interface errors
in software components, by executing the software with
a fault injected in the component, and by comparing this
execution with a fault-free one. Fig. 5 summarizes the steps
of the experimental methodology, which are discussed in the
following four subsections. The target component is linked
to a user program that exercises the component’s API, and
the resulting system is executed with a realistic workload
(§ 4.1). We then generate “faulty” versions of the component
under analysis, by applying code mutations on components’
source code (§ 4.2). We execute the mutated versions (a fault
injection experiment), and trace the API interactions between
the user program and the component, by recording the state
of all interface data after every API call (§ 4.3). Finally,
we compare the interface data of the fault-free execution
with all the faulty executions, and identify interface errors
by looking for differences, in order to address the research
questions (§ 4.4).

4.1 Setup of the target software component, software
system, and workload

The proposed methodology analyzes a target software com-
ponent by means of experimental runs of the component,
in the context of a software system. We use the term com-
ponent to generally refer to a reusable software module,
such as a library of general-purpose algorithms and data
structures, that provides a clear programming interface (e.g.,
API functions) for use by a software system, that is, a larger
software that includes the component to provide richer
functionalities. We refer as the user program to the part of
the software system that uses the component.

The software system used for the analysis of the target
component is fixed before applying the proposed method-
ology, and provides context for running the component,
and for analyzing interface errors produced by the target
component. Similarly, the methodology fixes in advance the
workload, that is, the set of inputs to stimulate the software
system and, indirectly, the target component used by the
system (e.g., by issuing API calls). This approach reflects
the typical workflow of fault injection experiments, where
the experimental setup reflects the expected operational
conditions that the system will experience when it will be
deployed in the operation [37], [61]. For example, in our
study we consider components from benchmark applica-
tions (§ 5.1), where: the component provides algorithms
and data structures (e.g., for graph analysis and data com-
pression); the user program calls the component (e.g., API
functions for manipulating and querying graphs, and for
reading and writing data to be compressed with various
options) using a workload (e.g., a dataset containing the list
of nodes and edges of the graph, or an image file to be

compressed) that was defined by the benchmark proposers
according to feedback from the industry [62].

Once the software system and the workload have been
fixed, the methodology injects faults in the target compo-
nent, such that the faults can have an impact during the
execution of the selected workload and software system (i.e.,
the fault is activated, and its effects are propagated from the
injected component to the rest of the system). This implies
that faults are only injected in those parts of the component
that are used by the system and stimulated by the workload.
As for the unused parts of the component, it is important
to note that the methodology is not meant to experiment
with every possible component fault, since that would be
not feasible as the amount of time available for testing is
limited in practice. Instead, the goal for our methodology,
and in general for fault injection experiments, is to analyze
the most likely errors of a component, by focusing on the
subset of faults that can be triggered in the context of a
representative system and workload of interest [63].

The proposed methodology, as for fault injection studies
in general [49], [64], performs a preliminary analysis of
the coverage of the component by the workload, and only
injects in areas that are actually covered, in order to avoid
injecting faults that would not be triggered. Despite the pre-
liminary analysis, it is still possible that the injected faults
can still be dormant, either because a fault does not infect
the state of the component, or the effects of the fault remain
confined inside the boundaries of the injected component
[9], [50], [51]. The methodology is not expected to avoid
these cases, since this behavior is a fundamental limitation
of fault injection based on code mutation, and also one of
our motivations for studying how software faults propagate
across components. We aim to overcome this limitation
through the direct injection of interface errors, which does
not suffer from the dormancy problem. The purpose of the
proposed methodology is to support at obviating the lack of
realistic models for injecting interface errors.

4.2 Fault Injection

We inject faults in software components by using an auto-
mated technique and tool (SAFE) [63], [65]. The tool mutates
the source code of the target component according to a set
of fault classes defined by the Orthogonal Defect Classifica-
tion (ODC) scheme [66], which includes Assignment faults
(values assigned incorrectly, or not assigned at all), Checking
faults (missing or incorrect validation of data, or incorrect
loop or conditional statements), Interface faults (incorrect call
statements, parameter lists, and interactions with external
components), and Algorithm faults (incorrect or missing
implementation that can be fixed by re-implementing an
algorithm or data structure). The SAFE tool injects 12 fault
types (TABLE 1) that cover the ODC fault classes. These
fault types were defined in previous studies [14] by analyz-
ing the bug-fixes of post-release software faults in several
open-source projects, and by identifying the bug-fix patterns
that appear most frequently and consistently across the
projects. The fault types also provide several detailed rules
(“constraints”), not shown for brevity, to describe the code
context in which the fault types should be injected to reflect
post-release software faults (for example, the removal of an



0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2850755, IEEE
Transactions on Software Engineering

7

!"#$%&'()!*!$(+ !($,-)./0123 (''"')&4&5*!6!)./0103&-6)$'&7648)./0193

#&,5$)64:(7$6"4)./01;3

!"#$%&'())*%("+)

!"#$%,*%("+)-.#%"%)/*+01203)3%

401203)3%
#3/)(*"3"$,-5-

401203)3%
65%7*#-)(*2(08("1 9:

;$5831)3%*<*
+012"(5-03

= '<2 !()>#)3+,

= '<; ?@%)3%

= '<9 A583"$538

= '<0 B"%%)(3-

Fig. 5: Overview of the experimental methodology.

if construct is injected in those if constructs that enclose
at most 5 statements, since it is unlikely that an if construct
is omitted for larger groups of statements).

The SAFE tool parses the C/C++ source code of the
target component, and automatically identifies injectable
locations for the fault types. Since the number of injectable
locations is typically very large for complex software, we
apply the following criteria to tune the selection of faults to
be injected:
Coverage. We first execute the fault-free target component
by running it with the user program and workload that
will be used in fault injection experiments. We analyze the
statement coverage and exclude the injectable locations that
are not covered, since the faults injected there would not
be triggered and would not contribute to the analysis of
interface errors.
Fault proneness. We exclude injectable locations that do not
fall in “fault-prone” parts of the target component. In our
previous work [63], we found that many injectable locations
are not representative of post-release faults, as faults injected
there are easily discovered by test suites (this criterion is
close to the notions of “semantic size” and of “sensitivity”
of software faults [46]). Moreover, we found that fault-
prone files and functions can be identified using software
complexity metrics (in particular, lines of code and fan-
out) and classification algorithms, in a similar way to defect
prediction approaches [67]. We adopt the same approach in
this study to identify the functions of the target component
in which to inject faults.
ODC proportions. We sample the injectable locations, such
that the proportion of ODC classes in the injected faults
matches the proportion of ODC classes found both in
commercial products [9] and open-source software [14].
These studies showed that the distribution of faults across
ODC classes consistently follow a common trend, where
the Algorithm class is the largest one, amounting to � 40%
of faults, while the Assignment and Checking classes have
approximately the same weight of � 20%. We follow this
proportion in our experimental analysis, by sampling the
injectable locations to avoid that ODC classes are over- or
under-represented.

4.3 Execution and API tracing
Both the fault-injected versions of the component under

TABLE 1: Injected fault types [14].

Type ODC Description

MFC ALG Missing function call

MIA CHK Missing IF construct around statements

MIEB ALG Missing IF construct plus statements plus ELSE be-
fore statements

MIFS ALG Missing IF construct plus statements

MLC CHK Missing AND / OR clause in expression used as
branch condition

MLPA ALG Missing small and localized part of algorithm

MVAE ASG Missing variable assignment using an expression

MVAV ASG Missing variable assignment using a value

MVIV ASG Missing variable initialization using a value

WAEP INT Wrong arithmetic expression used in parameter of
function call

WPFV INT Wrong variable used in parameter of function call

WVAV ASG Wrong value assigned to variable

analysis (§ 4.2) and the original version of the component
are executed in the context of the same user program and
workload (§ 4.1). In order to identify interface errors and
to characterize them according to the research questions
(as will be discussed in § 4.4), we trace all interface data
that are exchanged between the component and the user
program. To this purpose, we developed a tracer tool for
keeping track of interface data in C and C++ components.
From a general point of view, the tracer intercepts every
API function call from the user program to the component
under analysis; then, it lets the API function call to execute,
and records the contents of the interface data at the end of
the call. Moreover, the tracer assures the determinism of the
executions, in order to make the traces comparable.

The tracer takes in input an executable program (which
includes the fault-injected component to be analyzed), along
with command-line parameters, configuration files, and
other files to be processed by the program, and the corre-
sponding fault-free outputs (such as, the expected output
messages or files to be produced by the program) that will
be used to determine whether the faulty program execution
failed. Moreover, the tracer takes in input the list of API
functions of the target component; these functions can be
identified before the experiments by inspecting the docu-
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mentation of the component and the source code of the
component’s user program. For example, in the example
of the graph analysis component mentioned in the pre-
vious section, the tracer automatically scans the program
executable and looks for functions for manipulating and
querying graphs that are listed in the API; then, it executes
the program by feeding to the program the dataset of edges
and nodes, and by probing the calls to these functions,
in order to inspect the interface data that are exchanged
between these functions and the user program (e.g., data
structures representing paths in the graph, or numeric data
computed from the graph).

For each API call, we analyze the interface data struc-
tures that are in the scope of the user program at the time
of the API call, by automatically looking at variables in the
root set (global and stack variables of the caller program) and
any variable that can be accessed by following pointers in
the root set (the reachability graph). For example, in the case
of a graph algorithm, the root set includes the handle of the
graph data structure, such as a pointer variable returned by
the API, and the tracer follows the pointer to identify the
nodes and edges of the graph data structure. The sequence
of all API calls of an execution, and the set of interface data
at each call, form a trace.

The tracer is built on top of the GDB debugger, using
Python bindings to control and to inspect the state of
program executions, and runs on the Linux OS. The tracer
installs a breakpoint for every API function of the target com-
ponent. When the user program invokes an API function,
a breakpoint handler is triggered. The handler performs
the following steps before returning the control flow to the
component’s user.

1) It gets the list of variables that are visible in the scope of
the component’s user, including global and local vari-
ables, and checks whether a return value is expected
from the function call;

2) It logs the name of the called API function, and the
location of the user program that calls the API function
(call site).

3) It temporarily disables further breakpoints, which
might be triggered again during the execution of the
API function (e.g., the function indirectly calls another
API function), since our analysis does not focus on
error propagation inside the component, but on errors
propagated to the component’s users.

4) It poisons the stack frame of the current API function
call, which will be used by the called function to store
local variables. The stack is overwritten with a fixed,
known bit pattern, in order to detect local variables that
are not initialized during the course of the API function
call.

5) It resumes the API function execution, and suspends
again the execution once the function call has been
completed. It then re-enables the breakpoints.

6) It dumps into a log the full contents of interface data,
by recursively inspecting the root-set variables and
other structures linked to the root-set. If the interface
data contain a pointer, it will dereference the pointer
if valid, and dumps the pointed data structure; if the
interface data include an array, it will dump the individ-
ual elements of the array, dereferencing any pointer if

necessary; and it will dump the content of any primitive
type (e.g., int, char, float).

The comparison of traces in faulty and fault-free condi-
tions requires that differences between traces are actually
due to faults, and not due to random variations caused
by non-determinism. In our experimental setup, we avoid
such variations by addressing the following sources of non-
determinism.

Memory management. Heap areas (that are dynamically
allocated) and the stack area (that grows and shrinks over an
execution) may be assigned to different memory addresses
across executions, depending on the state of the OS and of
physical memory at the time of execution. In order to allow
the comparison of the addresses within pointer variables,
the tracer rewrites these addresses by replacing them with a
symbolic representation, which is composed by a pair <area id,
offset>. The tracer assigns to each memory area an unique
identifier (i.e., the area id) when the area is initially allocated;
this identifier is consistent across executions, since it is com-
puted by hashing the call stack at the time of the memory
allocation, and an incremental counter for distinguishing
between allocations with the same call stack. Afterwards,
when the tracer meets an address inside the interface data,
it identifies the memory area that includes the address, and
it computes the relative distance (i.e., the offset) between
the address and the beginning of its memory area. The
<area id, offset> symbolic representation is then saved in
the trace in place of the original address. If, during a fault
injection experiment, the injected fault does not corrupt a
pointer (i.e., the pointer still contains the address of the
intended memory area), then the symbolic representation
of that pointer will match the symbolic representation of the
pointer in the fault-free execution, even if the memory area
is assigned a different memory address.

To efficiently keep track of dynamic memory areas allo-
cated on the heap, we adopt an interval tree data structure,
i.e., a tree whose objects are numeric intervals, and which
can be queried to find intervals that overlap with any given
value [68]. In our case, the intervals represent memory
areas (denoted by the start and end addresses), which are
queried by looking for the address to be rewritten. At each
heap memory allocation, the tracer updates the interval tree;
moreover, the tracer also poisons the heap area when it
is allocated, before returning its pointer to the program.
Memory allocations are traced by intercepting memory allo-
cation functions, such as malloc() and free(), using the
function wrapping mechanism provided by Linux and Unix
systems [69].

Memory management can also lead to non-deterministic
program behaviors when fault injection results in memory
management bugs. For example, in the case that the injected
fault causes a buffer overflow, the outcome of the execution
is non-deterministic since it will overwrite whatever stack,
heap or global areas adjacent to the overflown buffer (de-
pending on the memory layout, which is determined by the
compiler and by memory allocation algorithms). Moreover,
if the overflow corrupts a pointer variable (such as the
return address on the call stack), the control flow will de-
pend on whatever has been allocated at the (wrong) address
written on the pointer variable. To have a deterministic and
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consistent behavior across fault injection experiments, we
instrument the target program at compile-time, by using the
AddressSanitizer memory error detector [70], to insert “red-
zones” around buffers and lightweight sanity checks before
memory access operations. We let the sanitizer to terminate
the program, in order to provide a consistent behavior in the
case of buffer overflows and other memory-related bugs.

Thread scheduling. Thread scheduling can influence an
experiment, by causing differences on the interface data not
due to the injected fault, but due to the different interleaving
of threads (i.e., the component behavior changes regardless
of the presence of the fault). To avoid such misleading
differences, we need to assure that if the fault does not
have any impact on the behavior of the component, then the
interface data will match the interface data of the fault-free
execution. In this study, we focus on sequential programs, as
they represent the base case for analyzing error propagation,
and cannot be affected by misleading differences due to
thread scheduling. However, we here discuss how to apply
the approach in the general case of multi-threaded software,
and why multi-threading is an orthogonal problem to the
research questions of this paper and should be addressed
separately.

To ensure the deterministic execution of a multi-
threaded program, it should be executed using record-and-
replay techniques: these techniques record the points of
the execution at which thread switches happen (preemption
points) and, when the program is executed again, they force
thread switches at the same preemption points. Record-and-
replay techniques have matured enough to be integrated in
debugging tools, and it is supported in our tracer by using
the rr tool in conjunction with the GDB debugger [71].

If the injected fault does not impact on the component
behavior, then the faulty program will be able to reach the
same preemption points of the fault-free run: in this case,
record-and-replay can enforce the same thread schedule,
thus reproducing the same interface data and avoiding
spurious differences caused by non-determinism. Instead,
if the fault impacts on the behavior of the component by
changing its control flow, then the execution deviates from
the preemption points in the fault-free run, and there is
no reference schedule that could be enforced: in this case,
the tracer lets the component to execute with an arbitrary
thread schedule, and we study the interface errors under
the schedule that occurs during the experiment. On the one
hand, this approach makes the analysis tractable, since it
requires to only execute the program once for each injected
fault; on the other hand, we (intentionally) do not analyze
the possible variability of interface errors with respect to
thread scheduling, which could amplify or dampen error
propagation. Analyzing this variability would require to ac-
tively explore the space of thread interleavings (by varying
thread scheduling, and evaluating the resulting interface
errors), but this approach would hit the infeasibility of ex-
haustive search for complex software and for a high number
of fault injection experiments. For this reason, we leave the
exploration of thread interleavings out of the scope of the
tracer, and focus our approach on sequential and individual
multi-threaded executions.

I/O operations. The timing and the contents of I/O oper-

ations can also affect the execution flow and the interface
data of a component. Non-determinism due to I/O tim-
ing can be avoided if the effects of thread scheduling are
avoided, either by focusing on single-threaded applications,
or through record-and-replay. In the former case, the exe-
cution of single-threaded applications is insensitive to I/O
timing, since there is no thread preemption that may be
delayed or anticipated due to variations of I/O waits. In
the latter case, record-and-replay makes the thread schedule
deterministic, despite variations of I/O waits. Moreover, we
avoid non-determinism of I/O contents by executing our
target applications in a controlled experimental environ-
ment, in which the target is fed with the same I/O data
(e.g., the same input files) at each execution.
Random number generators. The use of (pseudo) random
numbers in a program can lead to random values being
written to memory and to variations of the execution flow.
We avoid the effects of random numbers by wrapping ran-
dom number generators, such as rand_r, and forcing them
to return the same sequence of numbers at each execution.

4.4 Analysis of interface errors
The methodology identifies interface errors through a com-
parative analysis between a fault-free execution of the target
software, which serves as reference, and several faulty exe-
cutions, each with a different software fault.

Given a pair of executions (faulty and fault-free), our
methodology compares the two sequences of API calls made
by the user program to the component under analysis. The
comparison points out the following parts of the faulty
execution:
Initiation. At the beginning, the injected fault has not been

triggered yet. During this phase, the faulty execution
performs the same API calls of the fault-free one, and
exchanges the same interface data, thus there are no
interface errors to analyze.

Corruption. When an API call triggers the injected fault,
it propagates errors on the interface data; the errors will
then be processed by the user program. From this API
call onwards, the comparative analysis identifies which
parts of the faulty interface data are different from their
fault-free counterparts.

Termination. The run ends with any of these outcomes:
1) The errors cause the premature termination of the pro-

gram (a crash failure).
2) The program is unable to finish the execution within a

period of time comparable to the fault-free run (a hang
failure), e.g., due to an infinite loop caused by errors; in
this case, we force the termination of the experiment.

3) The program terminates the execution by its own, by
producing results in output that either differ (wrong
termination) or are the same of the fault-free execution
(correct termination).

Before terminating, the user program may perform the
same sequence of API calls of the fault-free execution (even
if interface data are corrupted); or the faulty execution may
diverge from the fault-free one, and exhibit different API
calls. In the case of divergence, the comparative analysis is
performed up to the last API call that matches the fault-
free execution, since the subsequent API calls (and related
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interface data) must be considered different than the correct
ones, and thus corrupted.

We perform a member-by-member comparison between
each data structure in the faulty trace and its fault-free coun-
terpart. The comparison is performed recursively for each
complex data type within the data structure (such as structs
and arrays within a larger C struct). For example, Fig. 6
shows a hypothetical C struct with int, long int, and
int * members. In this example, the long int member
of the faulty structure differs from the fault-free one, and
it is considered an interface error. The same comparison is
performed recursively on the array on integers pointed by
the int * member, which contains 3 interface errors: the
two elements at the end of the fault-free array are different
from the faulty counterparts; and the faulty array is over-
sized by one element that is not present in the fault-free
array.

int
long int
...
int *

!"

! # $ % &

root set

(a) Fault-free interface data.

int
long int
...
int *

!"

# ! $ " " "

root set

(b) Faulty interface data.

Fig. 6: Example of interface error identification.

Fig. 7 shows a more elaborated example with a linked
data structure, with variable size. The first interface error
is in the struct S1 * pointer member, which contains
an invalid address (that is, the address does not belong
to any heap, stack or global memory area allocated by the
program). In this case, the interface error includes the wrong
address in the pointer member, and the missing sub-struct
that is not reachable in the faulty execution. Moreover, there
are two interface errors in the linked list of struct S2
elements. Two elements of the list (the ones containing the
values A and C) are included in both the traces; instead, the
faulty interface data lack the element with the value B (the
first interface error), and contains a spurious element with
the value D (the second interface error).

...
struct S1 *
...
struct S2 *

...

...
struct S2 *

...
struct S2 *
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struct S2 * !
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(a) Fault-free interface data.
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(b) Faulty interface data.

Fig. 7: Example of interface errors in linked data structures.

The comparison between variable-sized data structures
is performed after a pre-processing step (data structure
alignment), which identifies the common parts between the
faulty and the fault-free data structures, and points out
the elements that are missing, spurious or different in the
faulty data structures. To find the common parts, the faulty

and fault-free structures are flattened into sequences, by
recursively traversing the structures and inserting the vis-
ited elements in the sequences; each element is traversed
and inserted at most once to avoid infinite recursion. Then,
we apply an algorithm on the two sequences to find their
longest common subsequence (LCS). The LCS is a subset of
elements that are present in both sequences in the same
order, and that can be obtained by removing (a minimal
number of) elements from the original sequences. This kind
of problem is recurrent in computer science, such as in
bioinformatics and in source code versioning (e.g., in the
diff Unix tool), and can be solved with efficient algorithms
[72], [73]. In our case, we compare linked data structures
element-by-element, by computing the LCS and identifying
their differences, which denote the corrupted elements.

At any given point in the trace, we take into account
whether an interface error happened during the current API
call, or it has been caused by a previous API call, in order to
avoid that the same interface error is accounted for a second
time. Fig. 8 shows an example with 6 interface errors, where
3 interface errors (in red) happen at the first API call, and
3 more (in green) happen at a subsequent API call. The last
3 interface errors are the result of a new execution of the
software fault, or the byproduct of previous interface errors
that are used for further computations. Our methodology
identifies which interface errors for a data structure are new
in the current API call, by retrieving the interface errors of
the last API call that involved the same data structure, and
comparing them with the current interface errors. This ap-
proach avoids to over-represent interface errors that persist
over time (i.e., across several API calls); moreover, it allows
us to analyze when and for how long interface errors are
introduced during a faulty execution.

int
long int
...
int *
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# ! $ " "

!"#$%&$'(&"
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(a) Initial corruption of inter-
face data after an API call.
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(b) New, distinct corruptions
in a subsequent API call.

Fig. 8: Example of distinct interface errors across API calls.

After identifying interface errors in all faulty executions,
we aggregate and analyze them to address the four research
questions, as discussed below.

. (RQ 1) Frequency of interface errors. This research ques-
tion is addressed by classifying the outcome of experiments
among the following types:

Propagation, failure. The injected fault propagated at
component interfaces, and generated interface errors in
interface data. Then, the interface errors led to a failure
of the component’s user (crash, hang, wrong termination).

Propagation, no failure. The injected fault propagated
as interface errors, but the component’s user was able
to execute correctly despite the interface errors (correct
termination).

No propagation, failure. The injected fault did not propa-
gate as interface errors, but it still caused a software fail-
ure (crash, hang, wrong termination) before propagating to
the component’s user. For example, the software crashes
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or becomes hung while executing the component’s code,
and the control flow never returns to the component’s
user.

No propagation, no failure. The injected fault neither
propagated any interface error, nor it caused a failure
of the software (i.e., a correct termination of the run). In
these cases, the injected fault is dormant: it either has not
been triggered, or its effects remained limited inside the
boundaries of the injected component. For example, the
fault corrupts internal component data that are never
passed to the caller program, or that are overwritten with
correct values before returned to the caller.
The relative number of experiments with propagation

(compared to the total number of experiments with propa-
gation and/or failure) represents the frequency of interface
errors. If the fraction of these cases is low, it means that
interface errors are an unlikely effect of injected software
faults: thus, faulty software components could be emulated
trivially by forcing the crash or stall of the component, as
suggested by the most simplistic software error models.
Instead, a high frequency of interface errors would motivate
richer error models to also encompass interface data corrup-
tion. In the case of the experiments with “no propagation, no
failure”, we cannot draw definite conclusions, since the lack
of failures and propagation may have been caused by equiv-
alent mutants (i.e., the injected component has an equivalent
behavior of the original one); in such cases, the outcome
of the experiment is not a genuine (lack of) effect of the
fault, but a code mutation that was ineffective at injecting
a fault. Thus, these experiments do not provide information
on the relative frequency of interface errors. However, for
completeness, we also report and discuss about the cases of
“no propagation, no failure”.

. (RQ 2) Extent of interface errors. We address this research
question by analyzing interface errors both with respect
to space (i.e., the quantity of interface data affected by
corruptions) and time (i.e., when interface errors happen
during the execution of the experiment).

As for the quantity of interface errors, we adopt two
measures: the number of corrupted bytes, and the number
of corrupted variables. For the first measure, we compare
the binary representation of each member of interface data
structures, and count the number of differing bytes. This
measure is useful to study interface errors with respect to
previous error models, which were hardware-oriented and
represented errors in terms of byte-granularity corruptions
[25], [26]. We only consider distinct interface errors (see
also Fig. 8): thus, even if an interface error persists over
the course of an experimental run, it adds to the count
of corruptions only at the first API call at which the error
occurred.

In addition to this measure, we also evaluate the extent
of interface errors in terms of number of corrupted member
variables (i.e., if a member variable differs from the faulty-
free counterpart, it counts as 1 corruption regardless of its
binary representation). If we would base our conclusions
only on a binary-level analysis, the extent of interface errors
could be over- or under-estimated due to the dependencies
on the underlying compiler and hardware architecture: for
example, in an x86-64 system, the same software fault (with

the same apparent effects on the program) could cause a
different number of corrupted bytes in an integer member
variable, depending on whether the integer is represented
as an int type (with 4 bytes) or a long integer type (with 8
bytes). Using an additional measure at the program-level
(corrupted variables) in conjunction with a binary-level
measure (corrupted bytes) provides a better understanding
of the extent of errors.

To study the temporal extent of interface errors, we ana-
lyze how interface errors are spread during the course of an
experimental run. It is important to note that interface errors
can be introduced only when the user program invokes the
APIs of the faulty component. Since interface errors cannot
happen at an arbitrary time, it would be misleading to con-
sider the duration of interface errors in terms of “physical”
time (as in traditional hardware error models). Therefore,
we quantify the temporal extent of interface errors in terms
of number of API calls that introduce new interface errors. At one
extreme, only one specific API call may introduce interface
errors, while the remaining API calls do not corrupt any
additional interface data. At the other extreme, the injected
fault may add new (distinct) interface errors every time that
an API is called. We analyze the distribution of this measure
across all of the experiments, in order to understand how
often interface errors should be injected to emulate compo-
nents’ faults.

. (RQ 3) Signaling of interface errors. To address this
research question, we analyze in which experiments the
injected component generated an error signal. We detect the
occurrence of error signals by looking for specific events
raised by the injected component, including:

� The faulty API call throws an exception that is never
thrown during the fault-free execution.

� The faulty API call provides to the caller a return value
that is different from the fault-free execution, and that
denotes an invalid value (e.g., the return value is null
or negative).

� The faulty API call invokes a callback function to signal
and handle the error, e.g., by printing a message or
causing the program to end the execution. For example,
a memory allocation procedure may invoke the callback
on allocation failures; or the API may check for data
inconsistencies using the assert primitive in the C
language.

Once we determine the occurrence of these events, we
measure the percentages of the following three cases:
Propagation, no signal. The experiment exhibited interface

errors, but the component did not raise any error signal
(i.e., the error was not noticed by the component).

Propagation, signaled. The experiment both exhibited in-
terface errors, and the component raised an error signal
(e.g., the component noticed and signaled an error only
after it corrupted interface data).

No propagation, no signal. The experiment did not exhib-
ited interface errors, but the component raised an error
signal (e.g., the control flow returned to the component’s
user before any interface error could occur).
The relative percentages of these cases provide indica-

tions for interface error injection. If the third case is predom-
inant, then the error injection could be limited to force an
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error signal to the component’s user; otherwise, if the first
two cases are a significant percentage, then it means that
error injection should focus on interface data (propagation,
no signal), or that it should inject both interface errors and
error signals (propagation, signaled).

To better support the injection of error signals, we also
measure the latency of error signals. We defined the la-
tency as the number of API calls between the occurrence
of interface errors (if any) and the occurrence of an error
signal; ideally, the error signal is raised in the same API
call that generates interface errors (i.e., the latency is 0). The
measured latency will provide suggestion on whether the
injection of error signals should be delayed with respect to
the injection of interface errors.

. (RQ 4) Patterns in interface errors. In this research ques-
tion, we investigate the differences between corrupted and
correct interface data, in terms of their contents. This aspect
is important since it defines what corruptions should be
introduced by an error injector, and it is commonly referred
as the problem of “what to inject” in the scientific literature.
We hypothesize that software faults do not corrupt interface
data in an arbitrary way but they tend to follow patterns,
which error injection should also follow. To investigate this
hypothesis, we define a set of patterns, based on existing
error models from previous studies on error injection (§ 2),
in order to evaluate whether these error models actually fit
software faults.

As for the previous research questions, we analyze indi-
vidual primitive members of the interface data structures. In
this case, we check whether the contents of faulty interface
data fit any of the patterns (summarized in TABLE 2).
To analyze the individual primitive members of interface
data structures, we defined patterns for four groups of
primitive data types: integers (including its variants such as
signed/unsigned and short/long integers), pointers, charac-
ters, and floating-point numbers. The patterns evaluate the
(erroneous) value that is assigned to a corrupted variable.

Special values. The erroneous value is a boundary or
special value for the data type. For example: for in-
teger types (such as int), 0, 1, �1, and the maxi-
mum representable value; for characters, the erroneous
value is in the range of ASCII codes that are printable
(32 : : : 126) or non-printable (0 : : : 31; 127); for pointers,
NULL and invalid addresses (i.e., addresses that do not
belong to any memory block allocated in the stack, heap
or global areas); for floating-point numbers, NaN, Inf,
and the maximum representable values. These special
and boundary values are often used in software testing
[45], and for data type-based fault injection such as
in BALLISTA [4] and FIG [48]. Moreover, for integer
variables, we check whether the corrupted value is (close
to) a power of two, as these values have often a special
meaning, such as in the case of integer variables used as
bitmasks (e.g., special values for changing the behavior
of a system call), where only one or few bits are set and
the variable equates, or is close, to a power of two.

Bit-flips. The erroneous value differs from the correct value
by 1 or 2 bit-flips, as in traditional hardware models for
SWIFI [5]. For integers and pointer types, we include bit-
flips in the least significant byte, in the most significant

TABLE 2: Error patterns for interface data types.

Type Pattern

Integers
(int,
long,
short)

� Uninitialized;
� Special value (0, 1, �1, signed and unsigned
int/long/short max);
� Power-of-two (2n) with a (small, large) offset;
� Correct value with (small, large) offset;
� Bit-flip (1 or 2 bits)

Pointers � Uninitialized;
� Invalid;
� Special value (0, 1, �1, void * max);
� Power-of-two (2n) with a (small, large) offset;
� Correct value with (small, large) offset;
� Bit-flip (1 or 2 bits)

Characters
(char)

� Uninitialized;
� Special value (0, 1, �1, char max);
� ASCII (printable, non-printable) code;
� Correct value with (small, large) offset;
� Bit-flip (1 or 2 bits)

Floating-
point
numbers
(float,
double)

� Uninitialized;
� Special value (0, 1, �1, float/double max,
NaN, Inf);
� Power-of-two (2n) with a (small, large) offset;
� Correct value (exponent, mantissa) with (small,
large) offset, inverted sign;
� Bit-flip (1 or 2 bits in mantissa and/or exponent)

Arrays � Missing (few, many) elements at end of array;
� Surplus (few, many) elements at end of array;
� Wrong (few, many, most) sparse elements within
the array;
� Wrong (few, many, most) contiguous elements
within the array

Linked
structures

� Missing (few, many, most) contiguous elements;
� Missing (few, many, most) sparse elements;
� Surplus (few, many, most) contiguous elements;
� Surplus (few, many, most) sparse elements;
� Wrong (few, many, most) contiguous elements;
� Wrong (few, many, most) sparse elements

byte, or in any of the remaining bytes of the variable.
For floating-point numbers, we include bit-flips located
in the mantissa, in the exponent, or in both.

Offsets. The erroneous value is different, but close to the
correct value (i.e., the one from the fault-free run). For ex-
ample, such corruptions were adopted for perturbation
analysis by Voas et al. [46], [47]. We consider “special”
values as ranges for the data corruptions. We include
cases in which the offset is, respectively, within a small
or large range �: for integer types, small if � � 10, or
large if � � 1000; for pointers, small if � � 64, or large
if � � 4096, since addresses are typically word-aligned
or page-aligned. For floating-point numbers, we check
whether the sign is inverted, or there is a small offset
either in the exponent or in the mantissa, or in both.

Uninitialized. Uninitialized data are a special case of ran-
dom data in C/C++ software, where a program does not
initialize data due to memory management bugs [12],
and the value of the data is determined by the environ-
ment (i.e., the compiler, the OS, and the hardware). In
our context, such cases occur when a variable is initial-
ized in the fault-free run, but uninitialized in the faulty
run. Uninitialized variables are found by “poisoning”
memory with a known bit pattern when it allocated, as
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discussed in § 4.3.
The patterns in TABLE 2 can be interpreted as classes

of values over the domain of a variable. Every interface
error is classified into at most one of the patterns. If the value
does not fit within any of these classes, then it is considered
an arbitrary error (i.e., not following any pattern), and it
is labeled as “other” in our analysis. If our hypothesis is
true, then the majority interface errors should fit one of
the patterns. If the value fits more that one pattern, we
give priority to the most specific class (following the order
of TABLE 2): for example, if the erroneous value is both a
special value and deviates from the correct value by a small
offset, we consider it as an erroneous special value.

In addition to primitive types, we consider patterns that
affect aggregates of elements (either primitive variables or
data structures), since conventional wisdom associates soft-
ware faults to corruptions of aggregate data (such as, buffer
overruns [12]). We consider both arrays, i.e., sequences of
contiguously-allocated elements, and linked data structures,
i.e., elements are connected through pointer variables, such
as linked lists, binary trees, and graphs in general. We look
in detail at how corruptions are spread across aggregates,
and how they should be introduced by error injection.

To define error patterns for arrays, we generalize the idea
of “overruns”, by considering the possibility of omitted,
surplus, and wrong elements. We compare the elements of
the faulty and fault-free arrays, by first analyzing whether
the faulty array has still the same elements except for some
missing (i.e., truncated) or superfluous elements at the end.
If the faulty array has the same size but contains wrong
elements, we analyze whether they are located in the initial
or in the last part of the array; whether the wrong elements
are sparse or contiguous; whether the corruptions affect a
small group of elements, all the elements, or most of them.

In the case of linked structures, we compare the flat-
tened interface data structures, as previously showed in
Fig. 7. Similarly to arrays, we analyze whether the cor-
rupted elements of the structure are missing (i.e., the faulty
structure misses an element that is present in the correct
structure), surplus (i.e., the structure includes an element
that is not present in the correct structure), or wrong (i.e.,
deviating from the correct counterparts). We check whether
the corruptions are a mix of these cases, or they consist
of only omissions, only surpluses, or only wrong elements.
Moreover, we check whether the corruptions affect a small
or large group of elements, and whether the corrupted
elements are sparse or contiguous (i.e., whether every cor-
rupted element has at least one direct pointer to another
corrupted element).

5 EXPERIMENTAL ANALYSIS

In the following, we investigate the research questions de-
fined in § 3.2, by adopting the methodology described in § 4
on a collection of ten programs described in the following.

5.1 Case study software

In order to conduct a realistic evaluation of the presented
methodology, and to derive useful insights on the propaga-
tion of interface errors, we had to choose a set of programs

that are representative of software commonly targeted by
fault injection tests. As previously mentioned in the intro-
duction, fault injections are mostly applied for critical sys-
tems, which are mostly implemented in C/C++. Therefore,
to be suitable for our study the targeted software needed to
be (1) written in one of these languages, (2) representative of
real software used in critical domains, (3) diverse in terms of
size, architecture, and interactions between the component
of interest and the rest of the software, and (4) commonly
used for fault injection studies.

We identified the SPECint R
 2006 benchmark [74] as
a suitable target fulfilling all of these requirements. We
found the SPEC’s program suite used in a number of fault
injection studies by the research community on dependable
computing [61], [75], [76], [77], and by studies on error con-
tainment techniques by research communities on computer
systems [70], [78], [79], [80], [81], [82]. Moreover, the suite
meets the requirement of including real C/C++ software,
with algorithms for compression, combinatorial optimiza-
tion, artificial intelligence, simulation, path finding, gene
sequence search, and XML processing [83]. These programs
are representative of algorithms adopted for critical tasks,
such as route planning and image processing for computer
vision in autonomous systems [84], service-oriented busi-
ness applications using XML-based protocols [85], cryptog-
raphy [86], genome research [87], and simulation of critical
infrastructures [88]. Finally, these programs exhibit a good
degree of diversity, as they range from small (few kLoCs
with a dozen of files) to large ones (hundreds of kLoCs,
with thousands of files) with interfaces of differing size and
usage frequencies (respectively, in terms of # API Functions
and # API Calls, as discussed later in TABLE 3).

The SPECint R
 2006 benchmark includes the source code
of the programs, the workloads to execute the programs
(e.g., representative inputs for the application areas of the
benchmark), and support tools to build and execute the
programs. We inspected the programs to identify the API
interface between generic modules inside the benchmark
(e.g., algorithms and abstract data types that can be reused
in a larger system, and that represent the component targeted
by our fault injections), and the user program that invokes
them and manages the inputs and outputs of the bench-
mark. We identified 10 out of 12 programs of the benchmark
for which this separation applies; in the other two cases,
either the program does not include a component suitable
to be reused in a larger software (the gcc program), or the
main program makes a trivial use of the component API
(the perlbench program, which embeds a Perl interpreter, but
where the API is limited to pass a Perl script to the embed-
ded interpreter without any interface data to be analyzed).
In the remaining programs, the component provided a clear
API to initialize data objects and to process them (such as,
to find a path in a graph, or to transform blocks of data by
compressing or converting them).

TABLE 3 lists the 10 programs from SPECint R
 2006 that
we analyze in this study. We run the programs using the
same inputs from the SPECint 2006 benchmark, except for
the number of iterations performed by the programs. The
SPEC (as also explicitly stated in the benchmark documen-
tation [89, quest. 17]) deliberately increased the volume of
the inputs for performance evaluation purposes, in order
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TABLE 3: Case study software from the SPECint R
 2006 benchmark.

Program Application area Language # LoC # Files # Functions # API Functions # API Calls # Faults

astar Path-finding Algorithms C++ 4,283 19 213 19 78 360
bzip2 Compression C 5,734 12 120 6 3,981 728
gobmk Artificial Intelligence C 157,652 96 2,682 3 289 2,328
h264ref Video Compression C 36,101 81 590 37 43 3,184
hmmer Search Gene Sequence C 20,661 72 539 7 1,008 428
libquantum Quantum Computing Sim. C 2,609 31 95 13 60 105
mcf Combinatorial Optimization C 1,577 25 24 7 10 131
omnetpp Discrete Event Simulation C++ 19,994 154 7,531 38 1,436 271
sjeng Artificial Intelligence C 10,547 23 144 10 17 372
xalan XML Processing C++ 267,924 1,771 13,242 11 11 2,380

All 10,287

to perform a larger number of iterations and to inflate the
execution time. In order to make our analysis feasible in
terms of duration and storage occupation (as we need to
perform a large number of experiments), we reduced the
volume of the inputs while still covering the same code
statements (with an error margin of 1% at most with respect
to the original coverage) and exactly the same API functions.
For astar, we reduce the map and region sizes; for gobmk,
we reduce the number of moves; for h264ref, we reduce
the number of frames; for hmmer, we reduce the number of
sequences; for mcf, we reduce the number of arcs and nodes
in the graph; for omnetpp, we reduce the duration of the
simulation. TABLE 3 shows the number of API functions
(“# API Functions”) that are invoked at least once by the
workload, and the total number of API function calls (“# API
Calls”), which is higher for the benchmarks that iterate over
large amount of inputs (such as file blocks in bzip2, events in
omnetpp, and sequences in hmmer). Finally, the table shows
the number of fault injections for every program, that were
selected according to coverage, fault-proneness and ODC
proportions as discussed in § 4.2, for a total of 10,287 faults.

5.2 Frequency of interface errors (RQ1)
We divide the fault injection experiments according to the
outcome of the experiment (e.g., whether the injected pro-
gram failed or not, and in which way), by applying the four
failure modes defined in § 4.4, namely crash, hang, correct ter-
mination and wrong termination. The resulting distributions
are shown in Fig. 9.

The distributions of failure modes vary across the target
components, as they depend on the nature of the component
and of its usage: for example, crash is a likely outcome for
programs that extensively use pointer arithmetics, where a
fault can turn into incorrect memory accesses, causing the
OS to kill the process. For some components (gobmk, h264ref,
hmmer, omnetpp, xalan), the most frequent outcome had been
the correct termination, up to 60% in the most extreme cases.
This is a result of the dormancy of code mutations: despite
faulty code is injected in the component and gets executed,
it did not produce any effect outside the program (e.g., the
component corrupted data that were ignored or overwritten
by the main program, or did not corrupt any data at all).
For the remaining components, either wrong termination
(astar, bzip2, libquantum, sjeng) or crash (mcf ) were the most
frequent outcomes. Almost all experiments exhibited the
same sequence of API calls of the fault-free execution (either
with or without interface errors), or the API call sequence

was interrupted by a program failure; only in less than 1%
of cases we observed divergences from the fault-free API
call sequence of the user program.

With respect to the research question 1, we are specifi-
cally interested in how many of these experiments exhibited
interface error propagations. These cases are showed as gray
segments in Fig. 9: they are the experiments where we found
any interface error propagated from the injected component
to the user program. For all of the components, the fraction
of experiments with interface corruption is relatively high
in the cases of wrong termination, as 78:7% of all wrong
termination experiments had interface corruptions; instead,
interface corruptions were less frequent for the other failure
modes (crash, hang and correct termination).

This result can be interpreted by observing that, in the
case of most of the crash and hang outcomes, the component
is unable to return any interface data since the crash/hang
occurs while the control flow is still in the injected com-
ponent. Moreover, in the case of the correct termination
outcomes, most of the injected faults stayed dormant (87:1%
of all correct termination experiments, and highlighted with
a thicker border in Fig. 9). Conversely, most of the wrong
termination outcomes were caused by the propagation of
errors from the component to the user program, and then
from the user program to the program’s outputs. In the
remaining cases of wrong termination, the program execution
did not experience interface corruptions since it had been
prematurely stopped due to error signaling, before interface
corruptions could be returned to the component’s user (this
aspect is further discussed in § 5.4).

Due to the variable proportions of the four outcomes
across the components, the amount of cases with interface
corruptions also varies across them (e.g., interface corrup-
tions are more frequent when there are more cases of wrong
termination and less cases of crash and hang outcomes). Over-
all, the interface corruptions were numerous, regardless
of the component. However, to quantify the likelihood of
interface corruptions, we need to consider the uncertainty
about error propagation in the case of correct termination and
no corruptions (i.e., the segments highlighted with a thicker
border). For these cases, it is not possible to determine
whether the injection produced equivalent mutants (i.e., the
injected component has an equivalent behavior of the orig-
inal one, and thus are “ineffective” injections, as discussed
in § 4.4 for RQ 1) or an actual fault that did not propagate
interface errors (e.g., the fault corrupted data that were not
passed to the component’s user).
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Fig. 9: Percentages of failures and of interface corruptions (thicker boxes represent dormant faults, i.e., correct terminations
without interface corruptions).

Therefore, we estimate the relative frequency of interface
corruptions by computing its lower bounds and upper bounds:
the lower bounds (the percentages with the label LB in
Fig. 9) represent the extreme case in which none of the
injected faults was an equivalent mutant (i.e., the percentage
with respect to all experiments); the upper bounds (the
percentages with the label UB in Fig. 9) represent the other
extreme in which all dormant faults were equivalent mu-
tants (i.e., the percentage computed excluding the segments
highlighted with a thicker border). When considering the
lower bounds, interface corruptions occurred in 31:8% of
all experiments, and ranged between 12:8% (gobmk) and
71:5% (astar) of the total. Moreover, if we consider the upper
bounds, the interface corruptions represent the majority of
the cases (55:6%, and ranging between 22:3% and 77:8%).

Summary and practical implications. The experimental
results show that no individual failure mode is predomi-
nant, and that interface corruptions always represent a non-
negligible share of component’s behaviors. Therefore, error
injection should not only encompass fail-stop behaviors of
the component (e.g., crashes and hangs during the execution
of the component’s API), but should also include corrup-
tions of its interface data.

5.3 Extent of interface errors (RQ2)

We show in Fig. 10 the distributions of the number of
corruptions in interface data, respectively in terms of cor-
rupted bytes and variables. We report the distributions for
corrupted variables and corrupted bytes separately to ac-
count for the possibly large differences of bytes per variable.
A bool variable, for instance, commonly has one byte,
whereas a long integer variable has 8 bytes. If these two
variables were accessible to the program via the component
interface and all their bytes were corrupted, Figure 10a
would report them as 9 corrupted bytes, whereas Figure 10b

would report them as 2 corrupted variables. The dots in the
violin plots represent the 25th, 50th, and 75th percentiles.
In almost all target components, the distributions were
bimodal or fat-tailed, with MBs of corrupted data in the
most extreme cases. The target components with the largest
amounts are astar and mcf (with data structures representing
large graphs), bzip2 and libquantum (with large arrays of
data), and xalan (with large, nested classes to represent a
document).

Concerning the research question 2, we are especially in-
terested in interface corruptions that go above 101 corrupted
bytes and 100 corrupted variables. We recall that these limits
represent traditional error models, such as bit-flips of single
memory words and CPU registers. The experimental results
show that many (and, in some components, the majority)
of the injections corrupt much more than few bytes and
variables, since a large part of the distributions lie above
these limits. For example, in the case of programs with
large graphs, arrays or classes, the corruptions affect many
of the elements contained in these structures. The only
two components for which we observed a small amount
of corruptions were gobmk and sjeng where, in most of the
cases, the injected fault caused the algorithms to compute
an incorrect decision, which was represented as a pair of (in-
correct) integer variables; however, the distributions exhibit
long tails even for these components (e.g., large corruptions
affecting the tree that represents the decision space). We
conclude from these experimental results that the corruption
of individual bytes/variables is too restrictive to emulate
the effects of software faults, and that interface error in-
jection should introduce extensive corruptions, especially if
the target component manages large, composite data struc-
tures. Instead, the corruption of individual bytes/variables
is more appropriate for components that expose a small
interface to their users.

As for the extent over time of interface corruptions, we
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Fig. 10: Distributions of the extent of interface errors.

analyze how the occurrences of corruptions are spread over
component API calls. Thus, we measured the number of
API calls in which the target component produced new
interface corruptions: the resulting distributions are showed
in Fig. 11. We found that, for most of the programs, the new
corruptions are concentrated in one or few API calls, while
only in bzip2, hmmer and omnetpp the new corruptions were
spread across up to hundreds of API calls.

We can notice in TABLE 3 that bzip2, hmmer and omnetpp
have also the highest number of API calls (i.e., more than
one thousand) under the considered workloads. This high
number of API calls is due to the high number of loop
iterations in which these APIs are called (e.g., in bzip2, the
file to compress is split in fixed-size blocks, and the APIs
are called for each block), increasing the likelihood that
faults are repeatedly triggered during the same experiment.
The gobmk program is the only target in which the new
corruptions were concentrated in few API calls despite the
high number of loop iterations: we found that the key
data structures used by API calls are reset between loop
iterations, thus making API calls independent and reducing
the likelihood of spreading errors across the course of the
same experiment.

Summary and practical implications. We found that
the amount of interface errors caused by software faults
is a fat-tailed distribution, contrarily to the assumption of
few corrupted variables and bytes of SWIFI error models.
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Fig. 11: Distributions of the number of API calls in which
distinct interface errors occurred.

Therefore, error injection should introduce a large num-
ber of corruptions, accordingly to the size of the interface
data structures of the component. We also observed that
the interface errors occur in one or few API calls, with
the exception of APIs called within large loops and that
operate over the same interface data, which can generate
long sequences of API calls with interface errors. This result
suggests that an interface error injector should concentrate
the injections in one or few calls, except for APIs that are
meant to be called within loops, where the injection should
be triggered repeteadly. From a practical point of view,
APIs meant for loops can be identified by performing a
preliminary profiling of API uses (such as in TABLE 3).

5.4 Signaling of interface errors (RQ3)

We analyze the relationship between interface error corrup-
tions and error signals, by considering three types of error
signaling mechanisms adopted in our target programs: (i)
APIs return a negative value (for integer return types) or
false (for boolean return types); (ii) the component forces
the termination of the program (e.g., by invoking special
functions such as assert); (iii) the component triggers an
exception from the OS (e.g., the SIGSEGV signal generated
by a POSIX OS in the case of an incorrect memory access)
that causes the termination of the program. Fig. 12 shows the
relative percentages of these error signaling mechanisms for
each target program; moreover, the figure further divides
the cases with respect to the occurrence of interface corrup-
tions (as in Fig. 9).

From these data, we can derive the relative frequency
of three cases: (i) the fault caused interface corruptions, but
the component did not raise any error signal to notify the
problem; (ii) the fault caused interface corruptions, which
were signaled by the component; and (iii) the component
avoided interface corruptions, and just raised an error signal
to notify its failure. We do not consider the cases with
neither interface corruptions nor error signals, as they do not
provide insights about the relationship between interface
corruptions and error signals.
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Fig. 12: Percentages of error signals.

Non-signaled (“silent”) interface corruptions have been
the most common case (45:8% of the experiments with
either interface corruptions or error signals). The tendency
towards “silent” interface corruptions highlights that it is
too simplistic to emulate software faults by only injecting
error signals, since the faults are often unnoticed by the
component. Therefore, interface error injection should nec-
essarily give emphasis to the corruption of interface data
without error signals. However, the traditional approach of
injecting error signals is still relevant, as error signals also
occurred in a significant part of the experiments (38:2%);
moreover, we found that interface corruptions and error
signals can indeed occur together (16:0%). Thus, interface
error injection should also cover these scenarios.

In the case of “signaled” interface errors, the latency of
error signals (not plotted for conciseness) had been similar
to the duration of the interface errors over time (previously
discussed in § 5.3): in most of the cases, the interface errors
were signaled by the same API call that propagates the
errors for the first time (65:3% of cases), or closely after
that API call (within 10 API calls in 86:4% of cases); in the
remaining cases (13:6%), the interface errors were signaled
only after a long sequence of API calls, e.g., at the comple-
tion of a loop as in the case of bzip2, hmmer and omnetpp.

Summary and practical implications. We observed that
interface corruptions and errors signals do not always occur
together, but may also occur independently (e.g., interface
errors that are not signaled, or error signals generated before
interface errors may occur). Therefore, error injection should
cover all of the three cases to emulate component behaviors
in a comprehensive way. Moreover, interface error injection
should focus on injecting error signals that immediately
follow interface corruptions; it should also inject delayed
error signals for programs with a large number of loop
iterations.

5.5 Patterns in interface errors (RQ4)
We further classify the interface corruptions according to
the incorrect value written to interface data, by looking for
recurring patterns of interface errors. The interface errors

are classified with respect to their data type and the patterns
defined in TABLE 2.

Fig. 13 (first plot on the left) summarizes the percentages
of corruptions that fit any of the patterns for primitive types,
including integer, pointers, characters, and floating point
numbers, and their variants. The distributions show that
the interface corruptions mostly tend to follow the expected
patterns. Overall, 83:0% of corruptions belong to one of the
patterns, while the remaining 17:0% did not belong to any
of them. The percentage of corruptions that comply to the
patterns ranged from 63:2% (bzip2) to 99:4% (sjeng).

In TABLE 4, we show the error patterns that cover most
of the interface corruptions. As discussed in § 4.4 for the
RQ4, we associate every interface error to exactly one pat-
tern, and we apply a scheme of priority (i.e., from the most
specific pattern to the less specific one) in case of ambiguity.
The crossmarks (�) point out the patterns (in the rows)
that fit a significant part of the corruptions (at least 10%),
and the blanks are patterns that cover less than 10% of the
corruptions; we computed the percentages both with respect
to interface corruptions observed for each program, and
with respect to all corruptions (the “all” column). Moreover,
in the left side of the table, we report the relative percentages
of corruptions across the four primitive types.

In all components, the interface errors were covered
by four error patterns at most. In the majority of cases,
the corruptions affected integer data (56:6% of the total
corruptions, and 98:8% of corruption excluding the bzip2
program, discussed later). In particular, the majority of the
components exhibited corruptions with special values (e.g.,
the 0 and 1 integers) and offsets from the correct value (e.g.,
the corrupted integer is close to the correct value). None of
the programs exhibited a significant amount of “uninitial-
ized” corruptions: even if the faulty component instantiates
uninitialized data (such as in the case of the MVIV fault
type in TABLE 1), these data do not necessarily surface
as uninitialized (e.g., they instead divert the control flow,
or they crash the component without propagating interface
errors). We also observed bit-flip corruptions, but they were
limited to few programs and exhibited low percentages
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Fig. 13: Percentages of corruptions that follow any of the patterns of TABLE 2.

compared to the other error patterns.
For the remaining corruptions not fitting the patterns

(i.e., the ones not included in the percentages of Fig. 13), the
observed values were unrelated to the correct values or to
special values: this happened most frequently for floating
point numbers (where incorrect floating point computa-
tions significantly deviated from the expected result) and
for characters that were used to handle binary data (e.g.,
compressed data in the case of bzip2, the only program were
corruptions in characters were predominant, which account
for 99% of all character corruptions in our experiments).
Interestingly, pointers did not deviate in a purely random
way (otherwise, we would have observed a high percentage
of “invalid” pointers), but the corrupted addresses pointed
to unrelated, still valid memory areas): for example, this
happened for programs with very large linked data struc-
tures (such as gobmk and omnetpp), in which wrong pointers
pointed out incorrect elements located in a distant part of
the address space.

As for aggregate data types (arrays and linked struc-
tures), we also observed recurring corruption patterns. The
percentages of corruptions covered by the patterns are sum-
marized in Fig. 13 (respectively in the middle and right-
most barcharts). Moreover, TABLE 5 and TABLE 6 (with
crossmarks on the patterns that cover more than 10% of
corruptions) show that the corruptions are concentrated into
few patterns.

The main observation is that corruptions did not ran-
domly mix omissions, surplus and wrong elements. Instead,
most of the faults only resulted in one kind of these corrup-
tions (respectively labeled as “missing”, “wrong” and “ad-
ditional” in the tables). For arrays, in the majority of cases
the fault only corrupted the existing elements (labeled as
“wrong”), but did not change the number of elements with
respect to the fault-free execution. Moreover, the corruptions
were often concentrated on a subset of elements, either
sparse or contiguous: 93:4% of array corruptions affected up
to 100 elements, and 98:4% affected up to 1000 elements.

TABLE 4: Error patterns for corruptions of primitive types.
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%

) uninitialized
special � � � � � �
pow small � � � � �
pow large
offset small � � � � � � � �
offset large � � � � � � � �
bitflip 1 � �
bitflip 2
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rs
(4

2.
85

%
) uninitialized

special �
ascii � � �
offset small � �
bitflip 1
bitflip 2 �

Po
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(0
.4

9%
)

uninitialized
invalid
special � � � �
pow small �
pow large
offset small � �
offset large � � � � �
bitflip 1 � � �
bitflip 2

Fl
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ts
(0

.0
5%

) uninitialized
special � � �
offset small
offset large � �
bitflip 1 � �
bitflip 2 � � �

For large linked structures, we only consider the pro-
grams that adopt them (astar, gobmk, xalan). Similarly to
arrays, most of the faults resulted either in truncated struc-
tures (the cases labeled as “missing”), or in corrupted ele-
ments while still preserving the original amount of elements
(the cases labeled as “wrong”). Overall, the large majority
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TABLE 5: Error patterns for corruptions of arrays.
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TABLE 6: Error patterns for corruptions of linked structures.
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missing contiguous few � �
missing contiguous many �
missing contiguous most
missing sparse few
missing sparse many � �
missing sparse most
surplus contiguous few �
surplus contiguous many
surplus contiguous most
surplus sparse few
surplus sparse many
surplus sparse most
wrong contiguous few � � �
wrong contiguous many
wrong contiguous most
wrong sparse few �
wrong sparse many �
wrong sparse most
mixed few
mixed many

of cases (more than 80% for every target component) fit
the patterns. The corruptions were localized in a subset of
elements of the linked structures (up to 100 elements in
67:7% of corruptions, and up to 1000 elements in 79:6%
of corruptions), either sparse or contiguous.

Summary and practical implications. Interface data
corruptions are not entirely random, but tend to follow
recurring patterns. In particular, for integer data (which
accounted for most of the corruptions), the majority of
corruptions were special values (such as 0s) and offsets
from the correct values; instead, other error patterns, such
as bit-flips, were infrequent or only happened in specific
programs. For floating-point numbers and chars, interface
errors exhibited random values. For pointer data types, the
corrupted address pointed to memory areas that were still
correctly allocated (e.g., pointers to wrong elements in a
linked data structure). For arrays and linked data structures,
the majority of faults resulted either in missing or wrong
elements, but did not mix omissions with commissions.
Moreover, the corruptions were often focused on small

subsets of elements (less than 10), or larger subsets in few
cases (up to 1000 elements).

Overall, interface error injection should follow these
patterns, as they fit the majority of interface corruptions. The
experimental results point out that only focusing on special
values and bit-flips (which are the error models assumed by
most of the error injection tools [10], [16]) is not sufficient,
since offsets are the largest group of interface errors. More-
over, error injection should also adopt random corruptions
when the interface data include binary or floating point
data; and should encompass truncations or corruptions of
elements in aggregate data types.

6 THREATS TO VALIDITY AND LANGUAGE IMPLI-
CATIONS

In our experimental analysis, we identified and ad-
dressed the following potential threats to validity: the non-
determinism of program executions, that may lead to spuri-
ous differences between the faulty and the fault-free execu-
tions that are not actually due to faults; the injection of code
mutations, rather than real software faults, to investigate
interface errors; and the choice of the case study software.
Case study software. If the selection of programs for our
study listed in Table 3 is not representative of programs
typically targeted by fault injections, this poses a threat
to external validity: The results of our study might not
generalize. To reflect the variety and complexity of real-
world software components well, we analyzed ten targets
from a popular benchmark, thus benefiting from the wide
acceptance of the benchmark programs as realistic, both
by academics and professionals [83]. As discussed in Sec-
tion 5.1, the chosen benchmarks contain programs that are
commonly applied in critical contexts, and they have been
adopted in fault injection studies before. Moreover, the
diversity of its programs with respect to size, architecture,
and application domains allows us to achieve a reasonable
spectrum of error behaviors; this diversity has also been
confirmed by the variations in the experimental results, e.g.,
in terms of different shapes of distributions and of error
patterns.

The problem of generalization aside, the experiments
provide sufficient evidence to conclude that traditional error
models are not suitable for emulating software faults by
corresponding counterexamples. If traditional error models
had been used for interface injections in the ten chosen pro-
grams, they would have led to injections that significantly
differ from the effects observed in our study.
Applicability to other languages. As stated in the in-
troduction, the focus of our work is on C and C++, as
these languages dominate the application areas that fault
and error injections are most commonly applied in. As the
approach has been developed for C and C++ programs, our
evaluation only covers programs written in these languages.
However, the presented approach is, in principle, not lim-
ited to C/C++ and we outline the necessary adjustments to
target other languages in Section 7.
Fault injection. Unfortunately, to the best of our knowledge,
there is a scarcity of datasets suitable for our analysis. The
existing artifacts used by the software testing community
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(such as the Siemens suite [90]) in almost all cases provide
only few faults; the programs are often relatively small; and
the programs often do not represent reusable components
with a realistic API. Code mutation allowed us to overcome
this scarcity, but introduces a potential threat to validity:
If the code mutations in our study were not representative
of actual bugs, the observed interface effects could not be
expected to be representative, either.

The emulation of software bugs by code mutations has
become an accepted practice in software testing research, as
several empirical studies showed that mutants can generate
representative errors [91], [92], [93]. To ensure that the
mutations in our study are representative of software bugs,
we chose a tool that performs these mutations according to
distributions of bug patterns identified by empirical studies
of software bugs in production software [9], [14]. As we con-
sider fault injections for emulating residual software bugs
in off-the-shelf software components, the tool additionally
filters out mutations that would be easily detected by trivial
developer tests of the component. The representativeness of
the chosen bug types (listed in Table 1) is discussed in detail
in [9], [14] and the selection of representative bug locations
in [14], [63].
Non-determinism. We designed the experimental method-
ology to make the fault-free execution reproducible, such
as by avoiding variations due to differences in the mem-
ory layout (e.g., by replacing raw memory addresses with
symbolic ones), thread scheduling, and I/O. In our design,
we chose not to investigate the sensitivity of interface
errors with respect to variations of thread scheduling, as
the space of possible variations is extremely large and
would require a separate study. To verify that these counter-
measures address all relevant aspects of “benign” execution
non-determinism that does not indicate symptoms result-
ing from our injections, we repeatedly executed fault-free
versions of the case study software. We did not find any
deviation across these repeated executions.

7 RESULT IMPLICATIONS ON INTERFACE ERROR
MODELS AND CONCLUSION

In this paper, we investigated the problem of emulating
faulty software components by injecting interface errors at
their interfaces with other components. To this aim, we
analyzed interface errors resulting from more than 10 000
representative code mutations in ten software components.
We looked at the interface errors from four perspectives
(the research questions) to critically revisit the existing error
injection techniques and to understand how to focus error
injection to better emulate software faults. We here sum-
marize the main conclusions from the analysis, by framing
them with respect to the three general dimensions that drive
error injection techniques: what, when, and where to inject.
What to inject. The error injection test plan should in-
clude both “fail-stop” behaviors (crashes and hangs) and
“semantic” errors (i.e., corrupted interface data) of the tar-
get component. Concerning the interface corruptions, error
injections should not be limited to random corruptions or
to specific error models (bit-flips, boundary values, small
offsets); instead, the error injection tests should cover all
of these error models. Moreover, in the case of aggregate

data types (arrays and linked structures), the error injection
tests should focus on truncating the data structures, or
replacing subsets of existing elements with incorrect ones.
Finally, the error injection test plan should include both
experiments where the interface errors are signaled (e.g., by
returning error codes at API calls), and experiments where
the interface errors are “silent”.
Where to inject. Since we are considering errors prop-
agated at components’ interfaces, the errors have to be
injected into interface data exchanged at API calls between
the component and its user. The error injection test plan
should include both experiments where the corruptions
affect small, localized areas (e.g., specific variables, as in
traditional hardware error models); and experiments that
corrupt large parts of the interface data (e.g., by corrupting
several member variables of the data structures), where the
amount of corruptions should should be calibrated with
respect to the size of the interface exposed to components’
users.
When to inject. In interface error injection, the errors are
introduced at component API calls, right after the control
flow returns from the component to its user. According to
our experiments, most of the interface errors are propagated
by one or few API calls, therefore the test plan can focus
the injection of errors at specific API calls. However, in the
case of APIs meant to be called in loops, it is necessary
to also inject interface errors repeatedly over the course of
a sequence of invocations. Moreover, when injecting error
signals, the signal should be injected at the same API call
when the interface errors are also injected; in the case of
a long sequence of API calls, error signals should also be
injected towards the end of the sequence.

In summary, these results point out that the traditional
error injection techniques, as used so far, do not accurately
emulate software faults, but that richer interface errors
should be injected (e.g., in terms of extent of corruptions
over the interface data structures, and of diversity of error
patterns to be injected). As future research direction for this
work, we foresee the development of new interface error in-
jection tools that take these insights into consideration. Such
tools must be able of injecting combinations of the existing
error models, including both silent data errors and error
signals. Moreover, the distribution of errors must follow the
size and the characteristics of the interface data structures of
the components, as we have observed different distributions
across different programs. Therefore, the error distributions
should be configurable, ideally in an automated way, ac-
cording to a preliminary static or dynamic analysis of the
software (e.g., for identifying API calls meant to be used
in a loop). It remains an open research problem how to
mechanize this configuration, and to validate whether it
can achieve a good approximation of the error distributions
observed in this study.

The source code of the tool used for this study is at:
https://github.com/rnatella/errordumper/

The tool can be potentially extended to support other
procedural and object-oriented programming languages, by
adjusting three aspects of the tool. First, the reachability
graph construction depends on the scope of the interface
data, which is implied by the definitions of data types and

https://github.com/rnatella/errordumper/
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by pointer values at run-time. Thus, the construction of the
reachability graph would require adjustment if the scope of
data is affected by other factors in other languages. Second,
we have implemented the dynamic part of our analysis, the
execution tracing, via GDB. If a language is not supported
by GDB, a different tracing mechanism is required, possibly
by leveraging existing debugging tools for the language.
Third, to classify interface errors, we adopt the patterns in
Table 2 from previous studies. As these rely on language-
specific data types, these patterns may require a redefinition
or extension for other languages.

Finally, the experimental results of this study have also
indirect implications for the design of fault-tolerant software
systems. A significant part of software faults are not ex-
plicitly signaled by the software component (e.g., through
exceptions or special return values); thus, error handling
mechanisms that simply check error signals may be not suf-
ficient, but they may require more sophisticated approaches
(e.g., consistency checks over the semantics of interface data
to detect the errors). Thus, the proposed analysis serves
both for defining more accurate models for interface error
injections, and for supporting more advanced forms of fault
tolerance based on run-time verification.
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