
ABY Developer Guide

Engineering Cryptographic Protocols Group (Encrypto)
TU Darmstadt

www.encrypto.de

May 18, 2018

www.encrypto.de

Contents

1 ABY – Overview 4
1.1 Terminology . 6

1.1.1 Sharings . 6
1.1.2 Circuits and Gates . 7
1.1.3 Wires . 7
1.1.4 Shares . 7

2 Environment 8
2.1 ABYParty . 9

2.1.1 GetSharings . 10
2.1.2 GetCircuitBuildRoutine . 11
2.1.3 Execution . 11
2.1.4 Reset . 11
2.1.5 Deletion . 11

2.2 Shares . 12
2.2.1 Getter Methods . 12
2.2.2 Setter Methods . 12
2.2.3 Plaintext Access Methods . 13
2.2.4 Share Creation . 13
2.2.5 Share Bitlengths . 14

3 Gates 14
3.1 Input/Output Gates . 15

3.1.1 PutINGate . 15
3.1.2 PutSharedINGate . 16
3.1.3 PutCONSGate . 17
3.1.4 PutOUTGate . 17
3.1.5 PutSharedOUTGate . 18

3.2 Function Gates . 18
3.3 Conversion . 20
3.4 Debug Gates . 21

3.4.1 PutPrintValueGate . 21
3.4.2 PutAssertGate . 22

4 SIMD Gates 23
4.1 Changes to Input Gates . 24

4.1.1 PutSIMDINGate . 24

2

4.1.2 PutSIMDCONSGate . 26
4.1.3 PutSIMDAssertGate . 27

4.2 Data Management Gates . 27
4.2.1 PutCombinerGate . 27
4.2.2 PutSplitterGate . 28
4.2.3 PutCombineAtPosGate . 29
4.2.4 PutSubsetGate . 30
4.2.5 PutPermutationGate . 31
4.2.6 PutRepeaterGate . 32

4.3 Misc Operations . 33
4.3.1 get_nvals_on_wire() . 33
4.3.2 get_clear_value_vec() . 34

5 Benchmarking 34

3

1 ABY – Overview

ABY [DSZ15] is a framework that allows to use mixed-protocol secure two-party computation
protocols, which in turn allow two parties to evaluate functions on sensitive data, while
preserving the privacy of this data. The protocols are represented as arithmetic or Boolean
circuits and can be evaluated privately using arithmetic sharing, Boolean sharing (the GMW
protocol) or Yao’s garbled circuits. These protocols can also be combined freely, as ABY
introduces efficient conversions between them, as depicted in Fig. 1.1.

A

C

B Y

A2YB2A

Y2B

B2Y

Figure 1.1: Overview of the ABY framework that allows efficient conversions between
Cleartexts and three types of sharings: Arithmetic, Boolean, and Yao.

To evaluate a function, ABY represents it internally as an arithmetic or Boolean circuit that
consists of potentially many gates. The computing parties then secret share all private values
and use arithmetic sharing, Boolean sharing, or Yao sharing to securely evaluate these gates.
For a detailed background on the techniques please refer to [DSZ15].

A typical example in secure computation is Yao’s millionaires problem, in which two mil-
lionaires (here denoted as SERVER and CLIENT) want to identify who among them is richer
without disclosing their actual wealth. In Listing 1.1, we provide a very basic code example
which shows every detail that is needed to implement Yao’s millionaires problem in ABY using
Yao’s garbled circuits and also verifying the result of the computation. The corresponding ABY
circuit description is depicted in Fig. 1.2 and will serve as a reference example throughout
this guide. In the remainder of this guide, we define our terminology (§1.1), detail the
main components of ABY (§2), give an outline of the gates that can be used to define the
functionality (§3), and outline how to build special SIMD circuits that reduce the memory
overhead and improve the computation time (§4).

4

Listing 1.1: Simple ABY Code Example for Yao’s Millionaires Problem

1 int32_t test_millionaire_prob_simple_circuit (e_role role) {
2 // Setup parameters
3 string address = " 127.0.0.1 ";
4 uint16_t port = 6677;
5 seclvl seclvl = get_sec_lvl (128);
6 e_sharing sharing = S_YAO;
7 uint32_t bitlen = 32;
8 uint32_t nthreads = 1;
9 ABYParty * party = new ABYParty (role , (char *) address .c_str (),

port , seclvl , bitlen , nthreads);
10 vector < Sharing *>& sharings = party -> GetSharings ();
11 Circuit * circ = sharings [sharing]-> GetCircuitBuildRoutine ();
12

13 // Plaintext values for testing and their bit length
14 uint32_t alice_money = 5;
15 uint32_t bob_money = 7;
16 uint32_t money_bitlen = 3;
17

18 // Input shares
19 share* s_alice_money = circ -> PutINGate (alice_money ,

money_bitlen , CLIENT);
20 share* s_bob_money = circ -> PutINGate (bob_money , money_bitlen ,

SERVER);
21

22 // Greater -than operation
23 share* s_out = circ -> PutGTGate (s_alice_money , s_bob_money);
24

25 // Output share
26 s_out = circ -> PutOUTGate (s_out , ALL);
27

28 // Execute secure computation protocol
29 party -> ExecCircuit ();
30

31 // Get plain text output
32 uint32_t output = s_out -> get_clear_value <uint32_t >();
33

34 // Verification
35 cout << " Testing Millionaire ’s Problem in " <<

get_sharing_name (sharing) << " sharing : " << endl;
36 printf ("\ nAlice Money :\t %d", alice_money);
37 printf ("\nBob Money :\t %d", bob_money);
38 printf ("\ nCircuit Result :\t %s" ,(output ? "Alice" : "Bob"));
39 printf ("\ nVerify Result : \t %s\n" ,((alice_money > bob_money) ?

"Alice" : "Bob"));
40

41 delete party;
42 return 0;
43 }

5

GT GATE

s_alice_money

secret shared

s_bob_money

s_out

IN GATE IN GATE

OUT GATE

output

alice_money bob_money

plaintext

Figure 1.2: Millionaires problem that compares the wealth of Alice and Bob by computing
output = alice_money > bob_money the amount of money both parties have
has a length of 3 bits and each wire represents a single bit.

1.1 Terminology

In this section, we briefly explain the terminology used in this guide. We refer the reader
to [DSZ15] and references therein for details.

1.1.1 Sharings

By sharings we refer to the underlying secure computation techniques that are used to protect
the privacy of the processed data. In ABY there are three sharings available: Arithmetic
sharing (S_ARITH), Boolean sharing using GMW (S_BOOL), or Yao sharing using Yao’s garbled
circuits (S_YAO).

As an example, in Listing 1.1 the plaintext values alice_money and bob_money are secret
shared using the S_YAO sharing, from which we obtain secret shared variables s_alice_-
money and s_bob_money. These variables are hidden (encrypted in some sense) and can
only collaboratively be reconstructed to plaintexts.

6

1.1.2 Circuits and Gates

A secure computation protocol evaluates a function, represented as a circuit, on private values
by secret sharing them and evaluating the gates on the secret shared data. ABY allows to
represent a function either as arithmetic or Boolean circuits. Typically, secure computation
protocols use two primitive gate operations: linear gates (addition in arithmetic circuits,
XOR in Boolean circuits) and non-linear gates (multiplication in arithmetic circuits, AND in
Boolean circuits). While the linear gates can be evaluated locally without communication
using simple operations, the non-linear gates require communication and the evaluation
of cryptographic operations. Hence, the performance of securely evaluating a function can
be improved by reducing the number of non-linear gates. Other than these primitive gate
operations, ABY includes various gates for secret sharing inputs, reconstructing outputs, and
high-level operations that are translated internally.

In ABY, we use a circuit object called Circuit from which we derive two sub-classes called
ArithmeticCircuit and BooleanCircuit. In our example in Listing 1.1, the parties define
a Circuit object circ, on which they put a high-level greater-than gate (GTGate), which
is internally translated by ABY into a Boolean circuit consisting of XOR and AND gates.
Additionally, the parties use the PutINGate to secret share their plaintext values and the
PutOUTGate to reconstruct the plaintext output. These gates are explained in detail in §3.

1.1.3 Wires

The gates in the circuit are connected by wires that hold elements in the group F2` . In
Boolean or Yao sharing these elements are single bits (` = 1), while in arithmetic Sharing
these elements are char, short, integer or double types (` ∈ {8, 16, 32, 64}), i.e. all operations
are mod 2`. In ABY, wires are uniquely identified by a global identifier (called wire ID) of
type uint32_t. This wire ID representation is used mostly internally, while the share object
abstracts from it and is intended for use in most common operations by the developer.

Remark: With SIMD operations it is also possible to have multiple elements on a single wire
simultaneously. This is explained in more detail in §4 and can be ignored for now.

1.1.4 Shares

To simplify the design of circuits, we abstract from single wires and bundle one or multiple
wires in a share object. Intuitively, a share can be seen as a variable in ABY, which can
be passed to gates to perform operations, and which can be assigned the output of a gate
operation. After the secure computation protocol has been executed, the plaintext values
can be obtained from the respective share object, which was returned by an output gate. In
our example in Listing 1.1, Alice and Bob obtain secret shares of their plaintext input values
in Lines 18 and 19, which they input in the GTGate in Line 22 to compute the greater-than

7

operation. Its result is then reconstructed to plaintext using the OUTGate in Line 25, from
which we obtain the plaintext value in Line 31.

A share object internally stores an array of uint32_t wire IDs and we refer to the size of
this array as the bitlength of the share. The wires in a share can be accessed through getter
and setter methods in order to operate on these wires directly. However, we recommend
accessing single wires only in special cases, since this can become very complex, depending
on the functionality.

2 Environment

In order to use the ABY framework, an instance of the class ABYParty has to be generated.
This ABYParty object represents a secure computation party and can be used to obtain
methods for defining the functionality and starting the secure computation. Defining the
functionality that should be evaluated securely is done via interaction with a Circuit object.
A Circuit object of a certain sharing type sharing can be obtained from the ABYParty
object. Once the functionality has been defined, the secure computation protocol can be
performed via the ExecCircuit() function of ABYParty. In this section, we first describe
the ABYParty routines (§2.1) and then detail methods for accessing a share (§2.2). We
outline gates separately in §3.

Listing 2.1: ABY Environment Setup

1 int32_t test_millionaire_prob_simple_circuit (e_role role) {
2 // Setup
3 string address = " 127.0.0.1 ";
4 uint16_t port = 6677
5 seclvl seclvl = get_sec_lvl (128);
6 e_sharing sharing = S_YAO;
7 uint32_t bitlen = 32;
8 uint32_t nthreads = 1;
9

10 ABYParty * party = new ABYParty (role , (char *) address .c_str (),
port , seclvl , bitlen , nthreads);

11 vector < Sharing *>& sharings = party -> GetSharings ();
12 Circuit * circ = sharings [sharing]-> GetCircuitBuildRoutine ();
13 // the circuit is defined here ...
14

15 party -> ExecCircuit ();
16 uint32_t output = s_out -> get_clear_value <uint32_t >();
17 // the output can be processed here ...
18

19 delete party;

8

20 return 0;
21 }

The code segment in Listing 2.1 will be used as a reference in the following section, that
describes how to set up the environment.

2.1 ABYParty

To set up the framework environment, an object of the class ABYParty needs to be instantiated.
The instantiated object of ABYParty corresponds to one of the two parties (denoted as SERVER
or CLIENT) which participates in the secure computation protocol and receives information
about the setup as input parameters.

ABYParty (e_role pid , char* addr = (char *) " 127.0.0.1 ", uint16_t
port = 7766 , seclvl seclvl = LT , uint32_t bitlen = 32, uint32_t

nthreads = 2, e_mt_gen_alg mg_algo = MT_OT , uint32_t maxgates
= 4000000) ;

Parameters

• role specifies the role of the party, which can be either SERVER or CLIENT. The dif-
ference between the SERVER and CLIENT roles is that the SERVER listens for an open
connection and acts as circuit garbler in Yao’s garbled circuits while the CLIENT connects
and acts as circuit evaluator in Yao’s garbled circuits.

• address specifies the IP address of the server. If the party acts as server, it opens a
socket on this IP address, whereas if the party acts as client, it tries to connect to this
IP address.

• port specifies the port to listen on / connect to. The default port is 7766.

• seclvl specifies the security level that is used internally and defaults to long-term
security. The required seclvl struct can be returned by providing a symmetric
security parameter to get_sec_lvl or by using the respective constant. Available
choices are short (ST, 80-bit symmetric security), mid (MT, 112-bit), long (LT, 128-bit),
extra-long (XLT, 192-bit), or extra-extra-long (XXLT, 256-bit) term.

• bitlen specifies the bit-length of variables in the arithmetic sharing and can be
{8,16,32,64}. The default value is 32 bits. In Boolean sharing and Yao’s garbled
circuits, this value is set as the default value for the maximum bitlength of shares.

• nthreads specifies the number of threads that are used in the setup phase.

9

• mg_algo is an optional parameter which can be used to change the algorithm with
which arithmetic multiplication triples are generated (see [DSZ15] for details). Possible
choices are: MT_OT, MT_PAILLIER, MT_DGK, i.e., MT generation based on OT extension,
on the Paillier public-key encryption scheme or on the Damgård-Geisler-Krøigaard
public-key encryption scheme. The default is MT_OT.

• maxgates specifies the maximum number of gates which can be built. By default, the
value is set to 4 000 000.

Example In Listing 2.1, we instantiate a party (of role server/client) which listens on/-
connects to localhost (127.0.0.1) on port 7766 with a long-term security parameter of
128-bits symmetric security, uses internal variables of at most 32-bit length, and uses one
thread in the setup phase.

ABYParty * party = new ABYParty (role , (char *) address .c_str (), port
, seclvl , bitlen , nthreads);

After the ABYParty object is created, it can be used to execute the defined circuit implementa-
tion with code described next.

2.1.1 GetSharings

In the ABY framework, a sharing describes a secure computation protocol which can be used to
define and evaluate a given circuit. The currently supported sharings are: Arithmetic sharing
(S_ARITH), Boolean sharing (S_BOOL) and Yao sharing (S_YAO). In order to access such a
sharing and define a functionality that should be evaluated, the GetSharings() method of
the ABYParty class is invoked.

vector < Sharing *>& ABYParty :: GetSharings ();

This method returns a vector of all the supported sharings by the framework.

Example In Listing 2.1, in line 10, we obtain the vector of sharings and store it in the
variable sharings.

vector < Sharing *>& sharings = party -> GetSharings ();

10

2.1.2 GetCircuitBuildRoutine

To define the functionality that should be evaluated, one needs to obtain a corresponding
Circuit object of the desired sharing.

This Circuit object can be obtained using the GetCircuitBuildRoutine() on the desired
sharing ∈ {S_ARITH,S_BOOL,S_YAO}. Note that, if sharing is S_ARITH, the circuit is of type
ArithmeticCircuit, while for S_BOOL and S_YAO the circuit is of type BooleanCircuit.

Circuit * circ = sharings [sharing]-> GetCircuitBuildRoutine ();

2.1.3 Execution

After the environment has been set up as described above, the actual circuit consisting of
several gates has to be constructed. We detail high-level gates that can be used to define
the function in more detail in §3. After the circuit has been built, it is evaluated securely by
invoking the ExecCircuit() method.

party -> ExecCircuit ();

2.1.4 Reset

After the circuit has been evaluated, the ABYParty object can be re-used to build a second
circuit to evaluate securely. In this case, the Reset method has to be invoked before building
the second circuit in order to reset the internal state. Network connections remain open and
some initializations and allocations are re-used, thus saving time compared to a full restart of
the entire framework.

party ->Reset ();

2.1.5 Deletion

The party object should be deallocated before the program terminates via:

delete party;

When handling huge implementations with the ABY Framework, it is recommended to
deallocate the ABYParty object after its scope has been terminated.

11

2.2 Shares

The share objects are used as variables within the ABY framework. In the following section,
we detail several methods that can be used to access and modify the internal state of shares.

2.2.1 Getter Methods

Each wire has a unique wire ID of type uint32_t. The wires in a share are stored internally
as vector<uint32_t>. These wires can be read using the methods: get_wire_id(), get_-
wire_ids(), or get_wire_ids_as_share().

get_wire_id() Returns a single wire at position posid.

uint32_t get_wire_id (uint32_t posid);

get_wire_ids() Returns a list of wires stored in a share as vector<uint32_t>.

vector <uint32_t > get_wire_ids ();

get_wire_ids_as_share() Returns a share object of the wire at position posid.

share* get_wire_ids_as_share (uint32_t posid);

2.2.2 Setter Methods

Internal wires that are stored in the share can be written using the methods: set_wire_-
ids() or set_wire_id(). By setting wires one can assign a subset of the outputs of a gate
as input to another gate or perform bit permutations without evaluating gates.

set_wire_ids() Sets the wires in a given share object to the provided wireids.

void set_wire_ids (vector <uint32_t > wireids);

set_wire_id() Sets the wire at position posid to the wire with ID wireid.

void set_wire_id (uint32_t posid , uint32_t wireid);

12

2.2.3 Plaintext Access Methods

A share stores wires which again hold secret-shared values. After the secure computation
protocol has been executed using execCircuit, plaintext values on the output wires (see
PutOutGate in §3.1.4) can be retrieved from share objects using the get_clear_value()
method. The output type can be varied using a template T.

template <class T> T get_clear_value ();

Example The following example illustrates how to use get_clear_value() to obtain the
plaintext output of the share s_out as uint32_t.

uint32_t output = s_out -> get_clear_value <uint32_t >();

There is also get_clear_value_ptr(), that returns a pointer to a plaintext result. It is used
when the result does not fit into a standard data type, typically, if it is longer than 64 bits.

uint8_t * output = s_out -> get_clear_value_ptr ();

2.2.4 Share Creation

In order to create a share object, one can either secret-share a plaintext input value (see
PutInGate in §3.1.1) using a Circuit object or initialize the object and manually assign wires
from scratch using the static create_new_share() methods described in the following.

1 static share* create_new_share (uint32_t size , Circuit * circ);
2 static share* create_new_share (vector <uint32_t > wireids , Circuit *

circ);

Initializes and returns a pointer to a share object. The first option (Line 1) creates an empty
share object to which wires need to be assigned using the setter methods before it can be
used as an input to a gate. The second option (Line 2) creates the share from the vector of
wire IDs.

Parameters

• size the number of wires that can be stored in the share, initialized to zero.

• wireids the wires that should be stored in the share.

• circ the Circuit object from which the wires come.

13

2.2.5 Share Bitlengths

Shares hold values of a specific bitlength and internally store the maximum bitlength to which
a value is allowed to grow. The bitlength of a share and the maximum bitlength that it can
support can be accessed via the following methods: get_bitlength(), set_bitlength(),
get_max_bitlength(), and set_max_bitlength(). By default, the maximum bitlength
of each share is set to the bitlength that is passed in the ABYParty object (see §2.1).

get_bitlength() Returns the current bitlength of the share.

uint32_t get_bitlength ();

set_bitlength() Sets the bitlength of the current share to bitlength. Note, however, that
this routine does not add any wires. Using such a share will cause errors if used in a gate
unless wires are added by the developer via set_wire(). Changing the bitlength only works
for Boolean or Yao sharing, but not for arithmetic sharing.

void set_bitlength (uint32_t bitlength);

get_max_bitlength() Returns the maximum bitlength up to which values in this share can
grow.

uint32_t get_max_bitlength ();

set_max_bitlength() Sets the maximum bitlength to which values in this share can grow to
max_bitlength, which must be at least as big as the current bitlength of the share. Changing
the maximum bitlength only works for Boolean sharing or Yao sharing, but not for arithmetic
sharing. For Boolean circuit-based protocols, the bitlength of the results from operations
such as addition or multiplication will grow up to max_bitlength and larger results will be
truncated to max_bitlength.

void set_max_bitlength (uint32_t max_bitlength);

3 Gates

The ABY framework implements several secure computation protocols that operate on arith-
metic or Boolean circuits. In the previous chapter §1.1.1, we have described how values are

14

secret shared between two parties and internally represented as wires in a circuit. In this
chapter, we explain how values on these wires can be processed using Gates. In other words,
gates are used for executing various operations on the provided user inputs.

These Gates can be created in ABY using Circuit objects (§1.1.2). We first describe I/O
gates (§3.1) that transform plaintext values into secret-shared values and back to recover
the plaintext value from a share. Next, we describe Function gates (§3.2) that compute on
secret shared values using. Then, we describe how to convert secret shared values between
different secure computation schemes using Conversion gates (§3.3). Finally, we describe
Debug gates that ease the development process (§3.4).

3.1 Input/Output Gates

Input and output gates are used for the transition between plaintext values and hidden
(encrypted/secret-shared) values and back. Input gates (PutINGate, see §3.1.1) take plain-
text values and perform an encryption/secret-sharing operation to create a share object that
can be processed with function gates. Constant gates (PutCONSGate, see §3.1.3) can be used
to input constant values to the circuit that are known by both parties. After computations on
shares are finished, the encryption/secret-sharing operation can be undone with an output
gate (PutOUTGate, see §3.1.4), which transforms the resulting shares back to plaintext values.
ABY also allows to input pre-shared values (PutSharedINGate, see §3.1.2) and output the
secret shares of a value (PutSharedOUTGate, see §3.1.5).

3.1.1 PutINGate

PutInGate is used to load the plaintext inputs of the respective parties to their shares.

share* PutINGate (uint64_t val , uint32_t bitlen , e_role role);
share* PutINGate (uint32_t val , uint32_t bitlen , e_role role);
share* PutINGate (uint16_t val , uint32_t bitlen , e_role role);
share* PutINGate (uint8_t val , uint32_t bitlen , e_role role);

share* PutINGate (uint64_t * val , uint32_t bitlen , e_role role);
share* PutINGate (uint32_t * val , uint32_t bitlen , e_role role);
share* PutINGate (uint16_t * val , uint32_t bitlen , e_role role);
share* PutINGate (uint8_t * val , uint32_t bitlen , e_role role);

The method returns a share object holding a share or encryption of a plaintext value.

15

Parameters

• val is the input value loaded by one of parties to generate the shared secret. This
variable can be of type uint8_t, uint16_t, uint32_t, uint64_t, or a pointer to
an array of such a datatype.

• bitlen states how many bits of the plaintext should be read and specifies the number
of wires in the generated share.

• role defines which party provides the input value for this share. The role value can be
either CLIENT or SERVER.

Example

1 // Share creation
2 uint32_t alice_money = 5;
3 uint32_t bob_money = 7;
4 uint32_t bitlen = 3;
5

6 // Input
7 share * s_alice_money , * s_bob_money ;
8 s_alice_money = circ -> PutINGate (alice_money , bitlen , CLIENT);
9 s_bob_money = circ -> PutINGate (bob_money , bitlen , SERVER);

alice_money and bob_money are the plaintext inputs for their respective shares. The inputs
are values with a length of 3 bits, which are indicated by the input bitlen. The third
parameter provided is the role of the party which provides the input to the share. The value
of role can be CLIENT or SERVER, depending on the role played by the party.

Note that, although the inputs for both roles have to be defined, every party can set only its
own input values and receives the values of the other party encrypted or secret-shared. This
also means, that the input values of the respective other party are ignored and can be set to
zero or an arbitrary value. More specifically, both parties need to specify the existence of all
inputs and who provides the corresponding plaintext input. The actual plaintext value needs
to be provided only by the respective party. The PutDummyINGate can be used to explicitly
mark an input of the other party without providing plaintext input values. It has the same
interface as the PutINGate but without the plaintext value val.

The SIMD version of the same gate is discussed in the SIMD Gates chapter §4.

3.1.2 PutSharedINGate

PutSharedINGate is used to load pre-shared inputs of the parties to shares. Both parties
need to provide an input and hence the source role is omitted. These gates are used for values
that come from a third party that secret shares them to outsource computation (sometimes
referred to as client/server model), or for intermediate values from a previous computation.

16

share* PutSharedINGate (uint64_t val , uint32_t bitlen);
share* PutSharedINGate (uint32_t val , uint32_t bitlen);
share* PutSharedINGate (uint16_t val , uint32_t bitlen);
share* PutSharedINGate (uint8_t val , uint32_t bitlen);

share* PutSharedINGate (uint64_t * val , uint32_t bitlen);
share* PutSharedINGate (uint32_t * val , uint32_t bitlen);
share* PutSharedINGate (uint16_t * val , uint32_t bitlen);
share* PutSharedINGate (uint8_t * val , uint32_t bitlen);

The method returns a share object for the pre-shared value val of bit-length bitlen. Put-
SharedINGate can be used together with PutSharedOUTGate (see §3.1.5) to pass shared
values between different ABY executions.

Remark: Currently, PutSharedINGate only works for arithmetic and Boolean sharing.

3.1.3 PutCONSGate

The PutCONSGate function can be used to input a constant plaintext value val into the circuit.
val has bit-length bitlen, which is known to both parties. The function returns a share
object, which represents the secret-shared/encrypted constant.

share* PutCONSGate (uint64_t val , uint32_t bitlen);

3.1.4 PutOUTGate

PutOUTGate is used to interactively decrypt a share or reconstruct a secret-shared value to
plaintext and stores the result in a share. After the ExecCircuit() method has been called,
the plaintext values can be accessed using get_clear_value(). This access is only possible
by the party defined in role.

share* PutOUTGate (share* s_out , e_role role)

Parameters

• s_out is the share object which should be output after the circuit is evaluated. The
plaintext value is extracted and converted into the specified datatype by the respective
party using the get_clear_value() methods.

• role defines the party which is allowed to see the output value. The role value can be
CLIENT, SERVER, or ALL.

17

Example

s_out = circ -> PutOUTGate (s_val , ALL);

In the above example, we assume the share object s_val contains a computed result. The
output gate performs a recombination operation that generates a plaintext value of the
computation result and stores it in s_out. In this example both parties can access the
computation result after the circuit execution using get_clear_value() (see §2.2.3).

3.1.5 PutSharedOUTGate

PutSharedOUTGate is used to output the secret shared value of a share into a variable
that can be used outside of the circuit. Both parties receive a shared output and hence the
destination role is omitted as parameter.

share* PutSharedOUTGate (share* s_out)

The method returns a share object for the pre-shared value. PutSharedOUTGate can be
used together with PutSharedINGate (see §3.1.2) to pass shared values between different
ABY executions.

Remark: Currently, PutSharedOUTGate only works for arithmetic and Boolean sharing.

3.2 Function Gates

Function gates are used to compute on shares. The ABY framework includes several standard
operations, listed in Tab. 3.1. Note that the operations AND (∧), OR (∨), XOR (⊕), MUX and
GT (>) are only available for Boolean circuits (i.e., in Boolean and Yao sharing) and not for
arithmetic circuits. We provide an overview of the operations in the following.

Table 3.1: Operations
Operations AND XOR OR ADD MUL SUB GT MUX INV

Arithmetic 7 7 7 3 3 3 7 7 3

Boolean 3 3 3 3 3 3 3 3 3

Yao 3 3 3 3 3 3 3 3 3

PutANDGate PutANDGate performs a bitwise AND operation on the two input shares and
returns the result as a share object of the same bitlength as the longer input share.

share* PutANDGate (share* ina , share* inb);

18

PutXORGate PutXORGate performs a bitwise XOR operation on the two input shares and
returns theresult as a share object of the same bitlength as the longer input share.

share* PutXORGate (share* ina , share* inb);

PutORGate PutORGate performs a bitwise OR operation on the two input shares and
returns the result as a share object of the same bitlength as the longer input share.

share* PutORGate (share* ina , share* inb);

PutADDGate PutADDGate performs an arithmetic addition operation on the two input
shares and returns the result as a share object. In arithmetic circuits the addition is carried
out modulo 2`, where ` is the bitlength of the sharing. In Boolean circuits, the result of the
addition also includes the carry bit in case the bitlength of the result does not exceed the
maximum bitlength of both shares (see §2.2.5 on how to get and set the maximum bitlength
of shares).

share* PutADDGate (share* ina , share* inb);

PutMULGate PutMULGate performs an arithmetic multiplication operation on the two input
shares and returns the result as a share object. In arithmetic circuits the multiplication is
carried out modulo 2`, where ` is the bitlength of the sharing. In Boolean circuits, the
bitlength of the output is the smaller value of either: 1) the sum of both inputs’ bitlengths or
2) the largest maximum bit length of the inputs.

share* PutMULGate (share* ina , share* inb);

PutSUBGate PutSUBGate performs an arithmetic subtraction operation on the two input
shares and returns the result ina−inb as share object. In arithmetic circuits the subtraction
is carried out modulo 2`, where ` is the bitlength of the sharing. Thus the result is always
positive. In Boolean circuits, the subtraction is carried out modulo 2max , where max is the
larger maximum bitlength of either ina or inb.

share* PutSUBGate (share* ina , share* inb);

PutGTGate PutGTGate performs an greater-than operation (>) on the two input shares
ina and inb and returns 1 if ina > inb and 0 otherwise.

share* PutGTGate (share* ina , share* inb);

19

PutMUXGate PutMUXGate implements a multiplexer and returns one of two given data
inputs based on a selection bit. If the selection bit sel is 1, the content of ina is returned. If
sel is 0, inb is returned.

share* PutMUXGate (share* ina , share* inb , share* sel);

PutINVGate The PutINVGate function inverts an input value in. In arithmetic circuits,
the inversion is performed by computing 2`−in, while in Boolean circuits the inversion is
performed bit-wise by computing ∀i≤`1⊕in[i], where ` is the bitlength of in and in[i] refers
to the i-th bit of in.

share* PutINVGate (share* in);

3.3 Conversion

The ABY framework allows to perform secure computation using arithmetic, Boolean or Yao
sharing and to arbitrarily convert secret-shared values between them using Conversion gates.
Unlike the function gates, introduced in §3.2, conversion gates do not change the secret-
shared value. Instead, conversion gates transform the shares, held by each of the parties,
from the representation of one secure computation scheme into another secure computation
scheme. Like all previous operations, the conversion is also done in a way that reveals nothing
about the plaintext.

In the following, we use the short notation A2B to denote that a method converts a share
from arithmetic to Boolean sharing. Given the existing schemes, this gives us six possible
conversion methods: A2B, A2Y, B2A, B2Y, Y2A, and Y2B. Note that only four of these methods
are implemented: A2Y, B2A, B2Y, and Y2B, as depicted in Fig. 1.1. The remaining two methods,
namely A2B and Y2A are implemented by computing Y2B(A2Y) and B2A(Y2B), respectively.

Note that the conversion gate function needs to be invoked from a Circuit of the target
sharing, i.e., the A2Y function would need to be called on a Circuit for Yao sharing.

A2Y The A2Y function converts an arithmetic share in into a Yao share. The returned share
is a Yao share, that has the same plaintext value as the input arithmetic share. Note that the
A2Y function needs to be called on a Circuit in Yao sharing.

share* A2Y(share* in);

20

Example The following example secret shares two 32-bit numbers A and B in the arithmetic
sharing and multiplies them. The product is converted to Yao sharing and again multiplied
by two.

share *s_a , *s_b , *s_res;
Circuit * ac = sharings [S_ARITH]-> GetCircuitBuildRoutine ();
Circuit * yc = sharings [S_YAO]-> GetCircuitBuildRoutine ();
s_a = ac -> PutINGate (A, 32, SERVER);
s_b = ac -> PutINGate (B, 32, CLIENT);
s_res = ac -> PutMULGate (s_a , s_b);
s_res = yc -> PutA2YGate (s_res);
s_res = yc -> PutADDGate (s_res , s_res);

B2A / B2Y / Y2B Similarly to A2Y, after creating the respective circuits and shares, the other
conversions can be performed using the following functions: B2A, B2Y, and Y2B.

A2B /Y2A The A2B and Y2A conversions are performed by invoking two primitive conversions
in sequence: A2B(x) = Y2B(A2Y(x)) and Y2A(x) = B2A(A2B(x)). In contrast to the
primitive conversions, the A2B and Y2A gates require the circuit of the intermediate conversion
as additional parameter. I.e., the A2B conversion requires a circuit from S_YAO while the Y2A
conversion requires a circuit from S_BOOL.

share* A2B(share* in , Circuit * yaosharingcircuit);
share* Y2A(share* in , Circuit * boolsharingcircuit);

3.4 Debug Gates

Debugging applications that use secure computation is a tedious task since the intermedi-
ate values are secret-shared and hence not easily verifiable. In the following, we outline
two gates that support the development process of secure computation applications: the
PrintValueGate and the AssertGate. Note that both gates should only be used during
the development process and not when private data is processed, since they leak intermedi-
ate values. In order to deactivate the Debug gates, set the macro ABY_PRODUCTION to 1 in
src/abycore/ABY_utils/ABYconstants.h:25.

3.4.1 PutPrintValueGate

PutPrintValueGate can be used to print the plaintext value of the share object in during
the secure function evaluation together with a pre-defined string infostring. Note that the
output will be printed once the gate is evaluated, hence the order in which the gates are

21

printed during function evaluation can vary from the order in which they were built during
circuit construction.

share* PutPrintValueGate (share* in , string infostring);

Example The following example prints the sum and the logical and of the two 3-bit numbers
alice_money and bob_money. Note that if a Boolean circuit is used, the logical AND will
be printed before the sum since ABY schedules the gates depending on their multiplicative
(AND) depth.

// Share creation
uint32_t alice_money = 5;
uint32_t bob_money = 7;
uint32_t bitlen = 3;

// Input
share * s_alice_money , * s_bob_money , *s_and , *s_add;
s_alice_money = circ -> PutINGate (alice_money , bitlen , CLIENT);
s_bob_money = circ -> PutINGate (bob_money , bitlen , SERVER);

s_add = circ -> PutADDGate (s_alice_money , s_bob_money);
circ -> PutPrintValueGate (s_add , "Sum");

s_and = circ -> PutANDGate (s_alice_money , s_bob_money);
circ -> PutPrintValueGate (s_and , " Logical AND");

party -> ExecCircuit ();

3.4.2 PutAssertGate

PutAssertGate verifies that the plaintext value of a share in is equal to a bitlen-bit plaintext
value assert_val. If the verification succeeds, the program continues and if the verification
fails, the program stops. The format of the plaintext input assert_val is the same as for the
PutINGate (see §3.1.1).

share* PutAssertGate (share* in , uint64_t assert_val , uint32_t
bitlen);

share* PutAssertGate (share* in , uint32_t assert_val , uint32_t
bitlen);

share* PutAssertGate (share* in , uint16_t assert_val , uint32_t
bitlen);

share* PutAssertGate (share* in , uint8_t assert_val , uint32_t
bitlen);

share* PutAssertGate (share* in , uint64_t * assert_val , uint32_t
bitlen);

22

share* PutAssertGate (share* in , uint32_t * assert_val , uint32_t
bitlen);

share* PutAssertGate (share* in , uint16_t * assert_val , uint32_t
bitlen);

share* PutAssertGate (share* in , uint8_t * assert_val , uint32_t
bitlen);

Example The following example adds the values alice_money and bob_money and ver-
ifies that the secret-shared output s_sum equals the result sum_money that is computed in
plaintext.

// Share creation
uint32_t alice_money = 5;
uint32_t bob_money = 7;
uint32_t bitlen = 3;
uint32_t sum_money = alice_money + bob_money ;

// Input
share * s_alice_money , * s_bob_money , *s_add;
s_alice_money = circ -> PutINGate (alice_money , bitlen , CLIENT);
s_bob_money = circ -> PutINGate (bob_money , bitlen , SERVER);

s_add = circ -> PutADDGate (s_alice_money , s_bob_money);
circ -> PutAssertGate (s_add , sum_money , bitlen +1);

4 SIMD Gates

SIMD (Single Instruction Multiple Data) denotes operations that process multiple data ele-
ments using a single operation. It is a concept from parallel programming that can be adapted
to secure computation to reduce the memory footprint of the circuit and improve the circuit
evaluation time.

In the previous chapters, all operations on a share were non-SIMD. In particular, a share
was a one-dimensional array that internally stored multiple wires, each of which held a single
element in F2` . For the SIMD operations in this chapter, we extend the shares to a second
dimension by allowing multiple elements in F2` to be stored on a wire. We give an example
in Fig. 4.1, where we depict a two-dimensional Boolean circuit share s_val with σ = 4
wires (bits) and where each wire stores nvals= 3 elements. Note that in the figures in this
chapter, the wires are ordered such that the least significant bit is on the rightmost wire while

23

the most significant bit is on the leftmost wire. SIMD values are ordered from top to bottom,
i.e., the value at index 0 is displayed at the top and increasing indices follow below.

bitlen=4

nv
al
s=

30
0
1

0
0
1

0
1
1

1
1
0

val[3]= s_val=
1
3
14{ }

Figure 4.1: SIMD representation example for a Boolean circuit share with 4 wires and where
each wire stores 3 elements in F2.

In the following, we first detail the changes to the input gates compared to a non-SIMD
evaluation (§4.1). Then, we introduce new data management gates that are needed for
re-organizing the elements on the wires to build circuits with high data-dependency (§4.2).
Finally, we outline miscellaneous functions that are changed or added compared to a non-
SIMD evaluation (§4.3).

Remark: Throughout this chapter, as well as in many ABY implementations, the value nvals
indicates if a share is non-SIMD (i.e., nvals= 1) or SIMD (i.e., nvals> 1).

4.1 Changes to Input Gates

The ABY framework abstracts from the SIMD programming style and hence all function
gates from §3 can be used exactly as for non-SIMD gates without requiring the developer to
explicitly keep track of the dimensions. The only gates that explicitly require the developer to
specify the dimension of SIMD gates are input gates §4.1.1, constant gates §4.1.2, and assert
gates §4.1.3. Note, however, that the dimensions of shares that are input to a gate have to
match or else an assertion error will occur.

4.1.1 PutSIMDINGate

To create SIMD circuits, the PutINGate (see §3.1.1) is replaced by a PutSIMDINGate that
additionally allows to specify the number of elements on a wire to be shared using the
variable nvals. The method returns a share object that encapsulates the shared secrets and
which can be used analogue to a non-SIMD share. Note that a call to PutSIMDINGate with
nvals= 1 is the same as a call to PutINGate.

share* PutSIMDINGate (uint32_t nvals , uint64_t val , uint32_t bitlen
, e_role role);

share* PutSIMDINGate (uint32_t nvals , uint32_t val , uint32_t bitlen
, e_role role);

24

share* PutSIMDINGate (uint32_t nvals , uint16_t val , uint32_t bitlen
, e_role role);

share* PutSIMDINGate (uint32_t nvals , uint8_t val , uint32_t bitlen
, e_role role);

share* PutSIMDINGate (uint32_t nvals , uint64_t * val , uint32_t
bitlen , e_role role);

share* PutSIMDINGate (uint32_t nvals , uint32_t * val , uint32_t
bitlen , e_role role);

share* PutSIMDINGate (uint32_t nvals , uint16_t * val , uint32_t
bitlen , e_role role);

share* PutSIMDINGate (uint32_t nvals , uint8_t * val , uint32_t
bitlen , e_role role);

Parameters

• nvals indicates the number of SIMD elements to be stored on a single wire.

• val is the input value loaded by one of the parties to generate the shared secret. This
variable can be of type uint8_t, uint16_t, uint32_t, uint64_t or a pointer to
an array of such a datatype. We give more information about the input format in the
example below.

• bitlen states how many bits of the plaintext should be read and specifies the number
of wires in the generated share.

• role defines the party which generates the share based on the input value provided.
The role value can be CLIENT or SERVER.

Example In the example given below, PutSIMDINGate is used to generate two shares with
bitlength 4, i.e., money_bitlen = 4-bit, and where each share stores nvals = 3 elements.

1 // Share creation with nvals as 3
2 uint32_t nvals = 3;
3 uint32_t alice_money [nvals] = {1, 3, 14};
4 uint32_t bob_money [nvals] = {6, 12, 5};
5 uint32_t money_bitlen = 4;
6

7 // Build input gates to obtain the corresponding SIMD shares
8 share* s_alice_money = circ -> PutSIMDINGate (nvals , alice_money ,

money_bitlen , CLIENT);
9 share* s_bob_money = circ -> PutSIMDINGate (nvals , bob_money ,

money_bitlen , SERVER);

Remark: The input format is such that all nvals values are written into separate array
positions and the remaining unused bits are ignored. The following code shows a more

25

complex input format example where two 10-bit values are secret-shared using the uint8_t
type, that holds at most 8 bit values:

1 uint32_t nvals = 2;
2 uint32_t bitlen = 10;
3 uint32_t bytelen = (bitlen +(bitlen -1))/8; //2 bytes for 10 bits
4 uint8_t * vals[nvals * bytelen]; // uint8_t array with 2*2 positions
5

6 // First 10- bit value: 0x03FF
7 vals [0] = 0xFF;
8 vals [1] = 0x03;
9

10 // Second 10- bit value: 0x02AA
11 vals [2] = 0xAA;
12 vals [3] = 0x02;
13

14 // Build input gates to obtain the corresponding SIMD shares
15 share* s_val = circ -> PutSIMDINGate (nvals , vals , bitlen , CLIENT);

Remark: As for the non-SIMD PutINGate, each party has to create an input gate for both roles.
However, only the input of each party for its own role will be set in the circuit while the input
to the gate of the other party will be ignored. In a similar fashion, PutSharedSIMDINGate
can be used to input pre-shared SIMD inputs (see §3.1.2 for more information on pre-shared
inputs).

4.1.2 PutSIMDCONSGate

Similar to the input gates, the PutCONSGate method (see §3.1.3) is also replaced by the
method PutSIMDCONSGate when working in the SIMD setting that adds the parameter nvals.
In contrast to the SIMD input gates, the SIMD constant gates only take a single value val of
bitlen-bit length as input and create a SIMD share with nvals copies of val.

share* PutSIMDCONSGate (uint32_t nvals , uint64_t val , uint32_t
bitlen);

Example In the example below, the constant 42 is copied nvals=3 times.

uint32_t nvals = 3;
uint32_t bitlen = 6;
uint64_t constant = 42;

// creates a SIMD share with 3 copies of the constant 42
share* s_val = circ -> PutSIMDCONSGate (nvals , constant , bitlen);

26

4.1.3 PutSIMDAssertGate

When verifying SIMD shares, the PutAssertGate method (see §3.4.2) is replaced by the
PutSIMDAssertGate method that adds the parameter nvals. The input format is the same
as for PutSIMDINGate (see §4.1.1).

share* PutSIMDAssertGate (share* in , uint32_t nvals , uint64_t *
assert_val , uint32_t bitlen);

share* PutSIMDAssertGate (share* in , uint32_t nvals , uint32_t *
assert_val , uint32_t bitlen);

share* PutSIMDAssertGate (share* in , uint32_t nvals , uint16_t *
assert_val , uint32_t bitlen);

share* PutSIMDAssertGate (share* in , uint32_t nvals , uint8_t *
assert_val , uint32_t bitlen);

4.2 Data Management Gates

To allow data management for SIMD shares, we introduce several new gate types. Note that
none of these gates changes the actual value on a wire. Instead, these gates allow to form
SIMD shares of a certain format which can then be evaluated using existing function gates.

4.2.1 PutCombinerGate

The combiner gate takes as input a non-SIMD share input containing σ wires and joins them
to a SIMD share with a single wire with nvals= σ values. The combiner gate is used to
group together non-SIMD values before inputting them into a SIMD operation. Alternatively,
the wires can be input as multiple shares objects ina and inb, where the input shares can
already be SIMD shares. In this case, it combines the values on all wires, e.g., if two wires
with 3 and 4 values are input into the combiner gate, the resulting wire will hold 7 values.

share* PutCombinerGate (share* input);
share* PutCombinerGate (share* ina , share* inb);

Example In the example, which is graphically illustrated in Fig. 4.2, a non-SIMD 4-bit share
s_val is transformed into a SIMD share s_out with nvals= 4 single bit values.

uint8_t val = 1;
share* s_val = circ -> PutINGate (val , 4, CLIENT);
share* s_out = circ -> PutCombinerGate (s_val);

27

nv
al

s=
4

bitlen=4

Combiner Gate

0

1
0
0
0

0 0 1

Figure 4.2: The combiner gate creates a SIMD share with nvals= 4 single bit values from
a non-SIMD share with a σ = 4 bit element.

4.2.2 PutSplitterGate

The splitter gate takes as input a SIMD share input with a single wire with nvals values
and splits it into a non-SIMD share with σ = nvals wires, each with nvals= 1 values. The
splitter gate is the reverse operation to the combiner gate and can be used to transform a
SIMD gate back into a non-SIMD gate.

share* PutSplitterGate (share* input);

bitlen=4

Splitter Gate

nv
al

s=
41

0
0
0

0 0 0 1

Figure 4.3: The splitter gate creates a non-SIMD share with σ = 4 wires from a SIMD share
with a single wire and nvals= 4 elements.

Example In the example, which is graphically illustrated in Fig. 4.3, a SIMD single-bit share
s_val with nvals = 4 is transformed into a non-SIMD share s_out with σ = 4 wires and
nvals= 1.

uint8_t val [4] = {1, 0, 0, 0};
share* s_val = circ -> PutSIMDINGate (4, val , 1, CLIENT);

28

share* s_out = circ -> PutSplitterGate (s_val);

4.2.3 PutCombineAtPosGate

The combine at position gate (CombineAtPosGate) takes a SIMD share input with σ wires
as input and combines the element at position pos on each wire of input into a new SIMD
share with a single wire and σ values on that wire. The CombineAtPosGate is useful when a
SIMD share needs to be transposed.

share* PutCombineAtPosGate (share* input , uint32_t pos);

Parameters

• input the input share object containing σ wires and nvals_in values on each wire,
which requires joining.

• pos the position at which joining is performed. The value of pos must be in the range
{0, . . . , nvals_in−1}.

nv
al

s_
ou

t
=

4

bitlen=4

CombineAtPos Gate

1

1
0
0
0

1 1 0
0 0 1 1
0 0 0 1

nv
al

s_
in

=
3

pos=0

Figure 4.4: The CombineAtPos gate creates a SIMD share with a single wire that holds
nvals_in = 4 values from a SIMD share with σ = 4 wires where each wire holds
nvals= 3 values.

Example In the example, which is graphically illustrated in Fig. 4.4, a SIMD share s_val
with σ = 4 wires and nvals = 3 values on each wire is transformed into a SIMD share s_out
with σ = 1 wire which has nvals= 4 values.

29

uint8_t vals [3] = {1, 3, 14};

share* s_val = circ -> PutSIMDINGate (3, vals , 4, SERVER);
share* s_out = circ -> PutCombineAtPosGate (s_val , 0);

4.2.4 PutSubsetGate

The subset gate takes as input a SIMD share input with a single wire with multiple values
and an arbitrary list of positions posids that is of size nvals_out. It returns a SIMD share
with a single wire that consists of nvals_out values of input at the positions specified in
posids.

share* PutSubsetGate (share* input , uint32_t * posids , uint32_t
nvals_out);

Parameters

• input the input share with nvals_in > 1. If it contains more than one wire (σ>1),
then the same subset of nvals is selected from every wire.

• posids an array of nvals_out positions to be selected from the input share. Every
position must be in the range {0, . . . , nvals_in−1}. The number of supplied positions
can be chosen freely. Positions can occur an arbitrary number of times.

• nvals_out the number of positions in posids and the number of values of the resulting
output share.

Example In the example, which is graphically illustrated in Fig. 4.5, a SIMD share s_out
with σ = 2 wires and nvals_out = 3 values is created from the positions {0, 2, 2} of a share
s_val with σ = 2 wires and nvals_in= 4 values.

uint32_t nvals_in = 4;
uint32_t nvals_out = 3;
uint8_t val [4] = {2, 1, 1, 3};
uint32_t posids [nvals_out] = {0, 2, 2};

share* s_val = circ -> PutSIMDINGate (nvals_in , val , 2, SERVER);
share* s_out = circ -> PutSubsetGate (s_val , posids , nvals_out);

30

nv
al

s_
ou

t
=

3

Subset Gate

1
0
0

nv
al

s_
in

=
4

1
0
0
1

posids={0,2,2}
nvals_ out = 3

0
1
1
1

0
1
1

bitlen=2

Figure 4.5: The subset gate creates a SIMD share with σ = 2 wires that hold nvals = 3
values each from a SIMD share with σ = 2 wires that hold nvals_in = 4 values
each.

4.2.5 PutPermutationGate

The permutation gate takes as input a SIMD share input with σ wires each with nvals_in
values and a list of positions posids with σ entries. It returns a single wire SIMD share s_out
with nvals=σ values, where the i-th value of s_out comes from the i-th wire of input at
position posids[i].

share* PutPermutationGate (share* input , uint32_t * posids);

Parameters

• input the share with the σ input wires and nvals_in values from which the values
should be taken.

• posids contains the position on the wires from input from which the values should
be read. posids must have σ entries, i.e., one entry for each wire in the input share
(its bitlength). Each position must be in the range {0, . . . , nvals_in−1} for the given
wire.

Example In the example below that is depicted in Fig. 4.6, the share s_out with a single
wire is assigned nvals = 4 values from the share s_vals with σ = 4 wires and nvals_in =
3 values. More detailed, after the PutPermutationGate, s_out contains the values on
positions {0− 0,1− 0,2− 2,3− 1}, where the notation i − j denotes the j-th element on
wire i of s_vals.

31

nv
al

s_
ou

t
=4

bitlen=4

Permutation Gate

1

1
0
1
0

1 1 0
0 0 1 1
0 0 0 1

nv
al

s_
in

=
3

posids={0,0,2,1}

Figure 4.6: The permutation gate creates a SIMD share with a single wire that holds nvals=4
values from a SIMD share with σ = 4 wires that each hold nvals_in = 3 values.

uint32_t bitlen = 4;
uint32_t nvals_in = 3;
uint8_t val[nvals_in] = {1, 3, 14};
uint32_t posids [bitlen] = {0, 0, 2, 1};

share *s_val , *s_out;
s_val = circ -> PutSIMDINGate (nvals_in , vals , bitlen , SERVER);
s_out = circ -> PutPermutationGate (s_vals , posids);

4.2.6 PutRepeaterGate

The repeater gate takes as input a non-SIMD share input and a integer value nvals and
outputs a SIMD share that contains the values of input nvals times.

share* PutRepeaterGate (uint32_t nvals , share* input);

Parameters

• nvals size of the output SIMD share.

• input non-SIMD input share from which the value is taken that is “repeated” nvals
times on the output share.

32

nv
al

s=
3

bitlen=4

Repeater Gate

0 0 0 1

0 0 0 1
0 0 0 1
0 0 0 1

nvals=3

Figure 4.7: The repeater gate creates a SIMD share by copying the value of a non-SIMD input
share nvals times.

Example In the example below, the SIMD share s_out which has wirelen= 4 wires and
nvals= 3 values is created such that each element of s_out is equal to s_val.

uint32_t nvals =3;
uint32_t bitlen = 4;
uint8_t val = 1;
share* s_val = circ -> PutINGate (val , bitlen , SERVER);
share* s_out = circ -> PutRepeaterGate (nvals , s_val);

4.3 Misc Operations

The following operations are added to the share object to allow handling SIMD shares.

4.3.1 get_nvals_on_wire()

The get_nvals_on_wire() method can be used to obtain the nvals value on a specific wire
with id wireid.

uint32_t get_nvals_on_wire (uint32_t wireid);

Parameters

• wireid value uniquely identifies a given wire in a share.

33

4.3.2 get_clear_value_vec()

The get_clear_value_vec() method is the SIMD pendant of the get_clear_value()
(see §2.2.3) method and can be used to obtain the plaintext value of a share. In contrast
to the get_clear_value() method, the get_clear_value_vec() uses the concept of “call
by reference” and returns a vector of outputs, the bitlength of the outputs, and the number
of output values of the share. The possible vector datatypes for the vector of outputs are
uint32_t and uint64_t.

void get_clear_value_vec (uint32_t ** vec , uint32_t * bitlen ,
uint32_t * nvals);

void get_clear_value_vec (uint64_t ** vec , uint32_t * bitlen ,
uint32_t * nvals);

The first prototype is used for obtaining a uint32_t vector output, whereas second is used
for obtaining a uint64_t vector output.

Parameters

• vec returns the vector which contains the output plain text information retrieved from
the share object. This value is a reference and therefore modified by the method. The
method is overloaded based on the datatype of vec.

• bitlen returns the bitlength of the values that are returned in vec.

• nvals returns the number of values of bitlength bitlen that are returned in vec.

Example The following example illustrates the use of get_clear_value_vec().

uint32_t bitlen = 8;
uint32_t nvals = 4;
uint8_t vals[nvals] = {64, 32, 128, 255};

uint32_t out_bitlen , out_nvals , * out_vals ;

share* s_vals = circ -> PutSIMDINGate (nvals , vals , bitlen , SERVER);
share* s_out = circ -> PutOUTGate (s_vals , SERVER);

//as a result it holds that , out_vals [i] == vals[i], out_bitlen ==
bitlen , and out_nvals == nvals

s_out -> get_clear_value_vec (& out_vals , &out_bitlen , & out_nvals);

34

5 Benchmarking

ABY has several benchmarking routines built in. Set the desired macros in src/abycore/ABY_-
utils/ABYconstants.h:32 to 1 in order to print benchmarking numbers for each ABY
execution. If you change these macros, you will need to recompile the core of ABY for the
changes to have an effect. For this you need to run make cleanmore and then make again.

Listing 5.1: Benchmarking flags in src/abycore/ABY_utils/ABYconstants.h
32 # define PRINT_PERFORMANCE_STATS 1
33 # define PRINT_COMMUNICATION_STATS 1
34 # define BENCHONLINEPHASE 1

PRINT_PERFORMANCE_STATS will print gate counts and runtime information for both setup
and online time. PRINT_COMMUNICATION_STATS shows communication numbers for sent
and received data during several phases of the protocols. BENCHONLINEPHASE shows details
runtime information of the online phase for every individual sharing type.

With all benchmarking flags set to 1 you will receive output that looks similar to the one
shown in Listing 5.2.

Listing 5.2: Example Benchmarking Output

./min -euclidean -dist.exe -r 1 -n 1000 -d 2
Online time is distributed as follows :
Bool: local gates: 94.942 , interactive gates: 47.419 , layer finish

: 23.019
Yao: local gates: 18.752 , interactive gates: 6.147 , layer finish :

5.693
Yao Rev: local gates: 0.033 , interactive gates: 0.025 , layer

finish : 0.024
Arith: local gates: 0.533 , interactive gates: 0.753 , layer finish :

0.918
SPLUT: local gates: 0.039 , interactive gates: 0.02 , layer finish :

0.179
Communication : 46.544
Complexities :
Boolean Sharing : ANDs: 202911 (1- bit) ; 999 (32- bit) ; Depth: 108
Total Vec AND: 203910
Total Non -Vec AND: 234879
XOR vals: 348874 gates: 286936
Comb gates: 0, CombStruct gates: 0, Perm gates: 0, Subset gates:

0, Split gates: 0
Yao: ANDs: 31000 ; Depth: 6
Reverse Yao: ANDs: 0 ; Depth: 0
Arithmetic Sharing : MULs: 2000 ; Depth: 3
SP -LUT Sharing : OT -gates: Total OT gates = 0; Depth: 1
Total number of gates: 929800

35

Timings :
Total = 410.593 ms
Init = 0.184 ms
CircuitGen = 0.069 ms
Network = 0.607 ms
BaseOTs = 919.677 ms
Setup = 165.308 ms
OTExtension = 129.077 ms
Garbling = 35.68 ms
Online = 245.284 ms

Communication :
Total Sent / Rcv 5159400 bytes / 7181498 bytes
BaseOTs Sent / Rcv 149064 bytes / 149064 bytes
Setup Sent / Rcv 5083349 bytes / 5563333 bytes
OTExtension Sent / Rcv 5083349 bytes / 4571324 bytes
Garbling Sent / Rcv 0 bytes / 0 bytes
Online Sent / Rcv 76051 bytes / 1618165 bytes

The communication numbers are the Bytes that the individual party sent and received during
the protocol execution. The total time is the time for the setup phase and the online phase
combined. The time for the base-OTs is not counted into the total time, as this is a one-time
expense that only happens when the connection between the two parties is established. The
setup phase contains the times for OT-Extension and Garbling.

Bibliography

[DSZ15] D. Demmler, T. Schneider, and M. Zohner. ABY – a framework for efficient
mixed-protocol secure two-party computation. In Network and Distributed Sys-
tem Security (NDSS’15). The Internet Society, 2015. Code: https://github.com/
encryptogroup/ABY.

36

https://github.com/encryptogroup/ABY
https://github.com/encryptogroup/ABY

	ABY – Overview
	Terminology
	Sharings
	Circuits and Gates
	Wires
	Shares

	Environment
	ABYParty
	GetSharings
	GetCircuitBuildRoutine
	Execution
	Reset
	Deletion

	Shares
	Getter Methods
	Setter Methods
	Plaintext Access Methods
	Share Creation
	Share Bitlengths

	Gates
	Input/Output Gates
	PutINGate
	PutSharedINGate
	PutCONSGate
	PutOUTGate
	PutSharedOUTGate

	Function Gates
	Conversion
	Debug Gates
	PutPrintValueGate
	PutAssertGate

	SIMD Gates
	Changes to Input Gates
	PutSIMDINGate
	PutSIMDCONSGate
	PutSIMDAssertGate

	Data Management Gates
	PutCombinerGate
	PutSplitterGate
	PutCombineAtPosGate
	PutSubsetGate
	PutPermutationGate
	PutRepeaterGate

	Misc Operations
	get_nvals_on_wire()
	get_clear_value_vec()

	Benchmarking

