

Explanation:

Due to the research orientation of the M. Sc. Artificial Intelligence and Machine Learning in combination with the great freedom of choice for the students, it is essential for a successful study that students have a **high degree of self-organization and very good reflection skills**.

In addition, it is necessary that a sufficient breadth of fundamental computer science courses, matching the contents of the compulsory and core courses from the B. Sc. Computer Science at TU Darmstadt, were covered during the previously absolved study programs.

For this reason, **at least 60 ECTS credits** matching the courses listed below are required for admission. You can enter the ECTS credits of the courses you have completed in the column on the right to check how likely it is that you will be admitted. It is not necessary that all courses or all specified content be covered, provided there is sufficient overlap.

If you have any question about the study program or the subject-specific part of the admission procedure, do not hesitate to contact us via <u>application@informatik.tu-darmstadt.de</u>.

Compulsory and core courses of the degree programme "Bachelor of Science in Computer Science" of the Department of Computer Science at TU Darmstadt	Successfully completed courses with comparable content (Credits/Units)
Functional and Object-oriented	
Programming Concepts:	
 Basic concepts of programming languages Foundations of functional programming languages Foundations of object-oriented programming languages Design and implementation of small software systems Basic type systems Fundamental data structures and algorithms and their complexity Recursion Simple I/O Basics of testing Documenting source code 	

Algorithms and Data Charles and	
Algorithms and Data Structures:	
 Data structures: array, list, binary search tree, B-tree, graph representation, hash table, heaps Algorithms: sorting algorithms, string matching, graph traversal, insertion, search, and deletion for data structures, shortest path search, minimal 	
 spanning trees Asymptotic complexity: run times, Big O notation, complexity classes P and NP, NP 	
completeness	
 Algorithmic strategies. for example: Divide-and- Conquer, dynamic programming, brute-force, greedy, backtracking, meta heuristics 	
Digital Design:	
5 5	
 Digital Design: digital abstraction and its technological realization, number systems, logic gates, MOSFET transistors and CMOS gates, power consumption 	
 Combinational Logic Design: boolean equations and algebra, mapping equations to gates, multi- level logic circuits, four-valued logic (0,1,X,Z), logic minimization, combinational building blocks, timing 	
 Sequential Logic Design: latches, flip-flops, synchronous logic design, finite-state machines, timing, parallelism 	
 Hardware Description Languages: modeling of combinational and sequential circuits, structural modeling, modeling of finite-state machines, data types, parametrized modules, testbenches Digital Building Blocks: arithmetic circuits, fixed-/floating-point representations, sequential building blocks, memory arrays, logic arrays 	
Computer Organisation:	
 Architecture of Microprocessors: programming in assembly and machine language, addressing modes, tool flows, run-time environment Microarchitecture: instruction set and architectural state, performance analysis, microarchitectures with single-cycle/multi-cycle/pipeliped execution exception handling 	
cycle/pipelined execution, exception handling, advanced microarchitectures	

 Memory and I/O-Systems: performance analysis, 	
caches, virtual memory, I/O techniques, standard	
interfaces	
Parallel programming:	
 Foundations of parallel systems 	
Parallel architectures	
 Programming models for parallel computing 	
Parallel algorithms	
Significant practical programming exercises	
covering the above topics	
If necessary introduction to base programming	
languages	
Operating Systems:	
 Introduction to Operating Systems (OS) - Role, purpose and design issues 	
 Processes and Threads - OS structures, process 	
control, abstractions, kernel/user modes and	
operations, context switching, interrupts	
Inter-Process Communication - Message passing	
IPC, RPC, layers, interfaces, hierarchies	
 Coordination: Deadlocks - Process coordination, 	
critical sections, deadlock characterization,	
deadlock detection and recovery, deadlock avoidance	
 Scheduling/Resource Management - Task 	
ordering, preemptive and non-preemptive	
scheduling, schedulers and policies, OS	
implementations	
Concurrency: Races, Mutual Exclusions - Critical	
sections, races, spin locks, synchronization	
 Programming Abstractions: Semaphores - Semaphores, Monitors 	
 Memory Management - Storage structures, 	
management/replacements approaches, virtual	
memory, paging, caching, segmentation	
• I/O - Device management, drivers, segmentation,	
interrupt handling, DMA	
• File systems - File systems requirements, design	
and implementation, file structures, directories,	
 naming, partitions, virtual file systems Fault Tolerance/Resilience - Fault types, fault 	
 Fault Tolerance/Resilience - Fault types, fault handling approaches, reliable message delivery, 	
OS reliability and availability, security issues	

•	Embedded/RT OS - Memory/disk/performance	
	management, recovery, fault-tolerances, real-	
	time aspects	
•	Distributed OS - Distributed computation and	
	communication abstractions, synchronization,	
	coordination, consistency	
•	Virtual Machines - Purpose and types of	
	virtualization, virtual file systems, Hypervisors	
Int	roduction to Compiler Construction:	
	·	
•	Structure of compilers	
	Context-free grammars for the description of	
	language syntax	
•	Lexing and parsing techniques	
•	Intermediate representations	
	-	
	Semantic analysis	
•	Run-time organisation	
•	Code generation	
•	Software tools for compiler constructions	
•	Implementation techniques for compilers	
-	· · -	
	tomata, Formal Languages and	
De	cidability:	
•	Introduction: transition systems, words,	
	languages	
•	Basic mathematical methods and proof patterns	
•	Finite automata and regular languages,	
	determinism and nondeterminism, closure	
	properties and automata constructions, Kleene	
	Theorem, Myhill-Nerode Theorem, pumping	
	lemma	
•	Grammars and the Chomsky hierarchy, context-	
	free languages, pumping lemma, CYK algorithm;	
٠	Models of computation: PDA and Turing	
	machines	
•	Decidability and recursive enumerability in the	
	Chomsky hierarchy	
Pro	opositional Logic and Predicate Logic:	
•	syntax and semantics of propositional logic,	
	functional completeness and normal forms,	
	compactness, complete proof calculi: resolution	
	and a sequent calculus	
	Syntax and semantics of first-order logic,	
•	Syntax and Semantics of mist of del toble,	

Part I: Cryptography • Background in mathematics for cryptography • Security objectives: Confidentiality, Integrity, Authenticity • Symmetric and asymmetric cryptography • Hash functions and digital signatures • Protocols for key distribution Part II: IT-Security and Dependability • Basic concepts of IT security • Authentication • Access control models and mechanisms • Basic concepts of software security • Basic concepts of software security • Basic concepts of software security • Basic concepts of web security • Dependable systems: error tolerance, redundancy, availability Information Management: Part 1: Structured data / databases Data Modeling: • Conceptual data models (ER / UML structure diagrams) • Conceptual data models (ER / UML structure diagrams) • Conceptual data model (relational model) • Mapping from conceptual to logical model Relational query languages: • SQL (in detail) • Relational Algebra Database theory: • Functional dependencies • Design theory and normalization Implementation of database systems: <
 Security objectives: Confidentiality, Integrity, Authenticity Symmetric and asymmetric cryptography Hash functions and digital signatures Protocols for key distribution Part II: IT-Security and Dependability Basic concepts of IT security Authentication Access control models and mechanisms Basic concepts of network security Basic concepts of software security Basic concepts of software security Basic concepts of software security Basic concepts of web security Basic concepts of web security Dependable systems: error tolerance, redundancy, availability Information Management: Part 1: Structured data / databases Data Modeling: Conceptual data models (ER / UML structure diagrams) Conceptual design Logical data model (relational model) Mapping from conceptual to logical model Relational query languages: SQL (in detail) Relational Algebra Database theory: Functional dependencies Design theory and normalization Implementation of database systems: Physical data storage Query processing and optimization
 Basic concepts of IT security Authentication Access control models and mechanisms Basic concepts of network security Basic concepts of software security Basic concepts of web security Dependable systems: error tolerance, redundancy, availability Information Management: Part 1: Structured data / databases Data Modeling: Conceptual data models (ER / UML structure diagrams) Conceptual data models (ER / UML structure diagrams) Conceptual data model (relational model) Mapping from conceptual to logical model Relational query languages: SQL (in detail) Relational Algebra Database theory: Functional dependencies Design theory and normalization Implementation of database systems: Physical data storage Query processing and optimization
 Authentication Access control models and mechanisms Basic concepts of network security Basic concepts of software security Basic concepts of web security Dependable systems: error tolerance, redundancy, availability Information Management: Part 1: Structured data / databases Data Modeling: Conceptual data models (ER / UML structure diagrams) Conceptual design Logical data model (relational model) Mapping from conceptual to logical model Relational query languages: SQL (in detail) Relational Algebra Database theory: Functional dependencies Design theory and normalization Implementation of database systems: Physical data storage Query processing and optimization
 Part 1: Structured data / databases Data Modeling: Conceptual data models (ER / UML structure diagrams) Conceptual design Logical data model (relational model) Mapping from conceptual to logical model Relational query languages: SQL (in detail) Relational Algebra Database theory: Functional dependencies Design theory and normalization Implementation of database systems: Physical data storage Query processing and optimization
 Data Modeling: Conceptual data models (ER / UML structure diagrams) Conceptual design Logical data model (relational model) Mapping from conceptual to logical model Relational query languages: SQL (in detail) Relational Algebra Database theory: Functional dependencies Design theory and normalization Implementation of database systems: Physical data storage Query processing and optimization
 SQL (in detail) Relational Algebra Database theory: Functional dependencies Design theory and normalization Implementation of database systems: Physical data storage Query processing and optimization
 Relational Algebra Database theory: Functional dependencies Design theory and normalization Implementation of database systems: Physical data storage Query processing and optimization
 Functional dependencies Design theory and normalization Implementation of database systems: Physical data storage Query processing and optimization
Physical data storageQuery processing and optimization

Cur	rent trends in databases:
•	Main-memory databases & Column-based data
	storage
•	NoSQL databases
•	Big Data Systems
Dar	t 2. Unstructured Date (Tout Drassasing
	t 2: Unstructured Data / Text Processing
	sics of unstructured data: Storage and encoding of unstructured text
•	Creating and annotating text corpora
•	Lexical resources and knowledge bases
-	Lesion resources and knowledge bases
Nat	tural Language Processing:
•	Segmentation
•	Syntactic and semantic analysis
•	
Otł	ner Applications for unstructured data:
•	Information Retrieval
•	Information Extraction
۸d	vanced Topics:
•	Introduction to research data management
•	Data curation and visualization
•	Documentation and archiving
	0
50	ftware Engineering:
•	Requirements Analysis
•	Domain Modelling
•	Object-oriented Analysis and Design
•	Software Architecture
•	Software Quality, in particular:
	• Verification (among others, testing and
	static analysis)
	 Software Metrics
•	Design Patterns
•	Refactoring
•	Software Evolution and Software Variability

Mo	odeling, Specification and Semantics:	
•	Models and their significance for Computer Science	
•	Introduction to discrete modeling using mathematical logic and algebraic concepts	
•	Interpretation and faithfulness of formal models	
•	Abstraction, refinement, composition, and decomposition of models	
•	Systematic construction of models and deliberate design decisions	
•	Syntax and operational semantics of programming languages	
•	Introduction to specification languages	
•	Syntax and denotational semantics of formal specification languages	
•	Elementary proof techniques and their use	
•	Modeling of systems and of requirements	
•	Modeling of coordination and communication in	
	concurrent systems	
Vis	ual Computing:	
•	Basics of perception	
●	Basic Fourier transformation	
•	Images, filtering, compression & processing	
•	Basic object recognition	
•	Geometric transformations	
•	Basic 3D reconstruction	
•	Surface and scene representations	
•	Rendering algorithms	
•	Color: Perception, spaces & models	
•	Basic visualization	
Int	roduction to Artificial Intelligence	
Г	ndational	
Fou ●	ndations: Introduction, History of Al	
•	Intelligent Agents	
Sea	rch:	
•	Uninformed Search	
•	Uninformed Search Heuristic Search	
•		
•	Heuristic Search	

	nning:
•	Planning in State Space
•	Planning in Plan Space
Dec	isions under Uncertainty:
•	Uncertainty and Probabilities
•	Bayesian Networks
•	Decision Making
•	
Ma	chine Learning:
•	Neural Networks
•	Reinforcement Learning
	5
Phi	osophical Foundations
Pro	babilistic methods in computer science:
I	'
•	Basics from probability theory, statistics and
	information theory.
•	Probabilistic approaches to graph-based
	modeling in computer science
	Basic probabilistic problems and use of
•	
	probabilistic methods
	• in practical computer science (e.g. run-time
	analysis of programs, data compression),
	• in technical computer science (e.g., reliability
	of hardware, caching), and
	• in applied computer science (e.g., simulation
	of stochastic systems, probabilistic robotics).
•	Selected randomized algorithms, their analysis by
	'The Probabilistic Method', algorithms for
	automated decision making and optimization
•	Application of probabilistic methods in artificial
•	
	intelligence (e.g. learning methods, neural
	networks) and data science
•	Implementation of probabilistic methods by
	means of practical programming examples
<u> </u>	
SCI	entific Computing:
•	Fundamentals of scientific modeling and "The
	Scientific Method".
•	Modeling and system description using the
	example of mechanical systems
•	Problem specification for the simulation of
	complex models

- Model building and identification using the example of mechanical systems
- Model analysis of static systems by numerical methods for the solution of linear and nonlinear systems of equations
- Model analysis and simulation of dynamic models by initial value problems with ordinary differential equations
- Implementation of models and simulations using examples e.g. from robotics and other fields
- Validation of models and simulations using measured data
- Applications in the simulation and control of robots as well as physics-based animation and computer games