

 Attachement 1 Page 1 / 10

Below you will find a tabular overview of the compulsory and core courses of the bachelor’s
degree in Computer Science at TU Darmstadt, once a short version and once including a short
description of the learning content. Please add to the table in the right-hand column the
successfully completed courses/modules of your previous degree programmes in which, in your
view, equivalent content to the corresponding courses was provided. It is not necessary for
admission that all listed courses have been covered in terms of content, but partially covered
courses will only be counted partially. At least 60 ECTS are needed to fulfill the requirements.

Compulsory and core courses at TU Darmstadt Successfully completed courses with
comparable content (Credits/Units)

Functional and Object-oriented Programming
Concepts

Algorithms and Data Structures

Digital Design

Computer Organisation

Parallel Programming

Operating Systems

Introduction to Compiler Construction

Automata, Formal Languages and Decidability

Propositional Logic and Predicate Logic

Formal Methods in Software Design

Computer Networks and Distributed Systems

Computer Security

Information Management

Software Engineering

Modeling, Specification and Semantics

Visual Computing

Introduction to Artificial Intelligence

Probabilistic methods in computer science

Scientific Computing

 Attachement 1 Page 2 / 10

Compulsory and core courses of the degree
programme "Bachelor of Science in Computer
Science" of the Department of Computer Science at
TU Darmstadt

Successfully completed courses with equivalent
content

Functional and Object-oriented
Programming Concepts:

● Basic concepts of programming languages
● Foundations of functional programming

languages
● Foundations of object-oriented programming

languages
● Design and implementation of small software

systems
● Basic type systems
● Fundamental data structures and algorithms and

their complexity
● Recursion
● Simple I/O
● Basics of testing
● Documenting source code

Algorithms and Data Structures:

● Data structures: array, list, binary search tree, B-

tree, graph representation, hash table, heaps
● Algorithms: sorting algorithms, string matching,

graph traversal, insertion, search, and deletion
for data structures, shortest path search, minimal
spanning trees

● Asymptotic complexity: run times, Big O
notation, complexity classes P and NP, NP
completeness

● Algorithmic strategies. for example: Divide-and-
Conquer, dynamic programming, brute-force,
greedy, backtracking, meta heuristics

Digital Design:

● Digital Design: digital abstraction and its

technological realization, number systems, logic
gates, MOSFET transistors and CMOS gates,
power consumption

● Combinational Logic Design: boolean equations
and algebra, mapping equations to gates, multi-
level logic circuits, four-valued logic (0,1,X,Z),
logic minimization, combinational building
blocks, timing

 Attachement 1 Page 3 / 10

● Sequential Logic Design: latches, flip-flops,
synchronous logic design, finite-state machines,
timing, parallelism

● Hardware Description Languages: modeling of
combinational and sequential circuits, structural
modeling, modeling of finite-state machines,
data types, parametrized modules, testbenches

● Digital Building Blocks: arithmetic circuits, fixed-
/floating-point representations, sequential
building blocks, memory arrays, logic arrays

Computer Organisation:

● Architecture of Microprocessors: programming in

assembly and machine language, addressing
modes, tool flows, run-time environment

● Microarchitecture: instruction set and
architectural state, performance analysis,
microarchitectures with single-cycle/multi-
cycle/pipelined execution, exception handling,
advanced microarchitectures

● Memory and I/O-Systems: performance analysis,
caches, virtual memory, I/O techniques, standard
interfaces

Parallel programming:

● Foundations of parallel systems
● Parallel architectures
● Programming models for parallel computing
● Parallel algorithms
● Significant practical programming exercises

covering the above topics
● If necessary introduction to base programming

languages

● Operating Systems:

● Introduction to Operating Systems (OS) - Role,

purpose and design issues
● Processes and Threads - OS structures, process

control, abstractions, kernel/user modes and
operations, context switching, interrupts

● Inter-Process Communication - Message passing
IPC, RPC, layers, interfaces, hierarchies

 Attachement 1 Page 4 / 10

● Coordination: Deadlocks - Process coordination,
critical sections, deadlock characterization,
deadlock detection and recovery, deadlock
avoidance

● Scheduling/Resource Management - Task
ordering, preemptive and non-preemptive
scheduling, schedulers and policies, OS
implementations

● Concurrency: Races, Mutual Exclusions - Critical
sections, races, spin locks, synchronization

● Programming Abstractions: Semaphores -
Semaphores, Monitors

● Memory Management - Storage structures,
management/replacements approaches, virtual
memory, paging, caching, segmentation

● I/O - Device management, drivers, segmentation,
interrupt handling, DMA

● File systems - File systems requirements, design
and implementation, file structures, directories,
naming, partitions, virtual file systems

● Fault Tolerance/Resilience - Fault types, fault
handling approaches, reliable message delivery,
OS reliability and availability, security issues

● Embedded/RT OS - Memory/disk/performance
management, recovery, fault-tolerances, real-
time aspects

● Distributed OS - Distributed computation and
communication abstractions, synchronization,
coordination, consistency

● Virtual Machines - Purpose and types of
virtualization, virtual file systems, Hypervisors

Introduction to Compiler Construction:

● Structure of compilers
● Context-free grammars for the description of

language syntax
● Lexing and parsing techniques
● Intermediate representations
● Semantic analysis
● Run-time organisation
● Code generation
● Software tools for compiler constructions
● Implementation techniques for compilers

 Attachement 1 Page 5 / 10

Automata, Formal Languages and
Decidability:

● Introduction: transition systems, words,

languages
● Basic mathematical methods and proof patterns
● Finite automata and regular languages,

determinism and nondeterminism, closure
properties and automata constructions, Kleene
Theorem, Myhill-Nerode Theorem, pumping
lemma

● Grammars and the Chomsky hierarchy, context-
free languages, pumping lemma, CYK algorithm;

● Models of computation: PDA and Turing
machines

● Decidability and recursive enumerability in the
Chomsky hierarchy

Propositional Logic and Predicate Logic:

● syntax and semantics of propositional logic,

functional completeness and normal forms,
compactness, complete proof calculi: resolution
and a sequent calculus

● Syntax and semantics of first-order logic,
structures and assignments, normal forms,
skolemization, Herbrand theorem, compactness,
complete proof calculi: (ground) resolution and a
sequent calculus, Gödel's Completeness Theorem

● Undecidability of first-order logic;
● optional: digressions on expressiveness and

model checking

Formal Methods in Software Design:

● Modelling of concurrent software with the

ProMeLa language
● Formalisation of safety and liveness properties in

propositional temporal logic
● Theoretical Foundations of Model Checking
● Verification of ProMeLa programs using the

model checker SPIN
● Syntax, semantics, and sequent calculus for

typed first-order logic
● Foundations of the contract-based software

specification language JML
● Dynamic logic as a first-order program logic
● Formal software verification by symbolic

execution and invariant reasoning

 Attachement 1 Page 6 / 10

● Tool-based verification of Java programs with the
verification system KeY

Computer Networks and Distributed
Systems:

● Foundations: Services, protocols, connection,

layer model
● Role of link layer, network layer, transport layer,

application layer
● Basic mechanisms (algorithms, protocols) for

multiplexing, broadcast, multicast, routing and
forwarding

● Quality of service and reliability: definition and
mechanisms

● Coordination in distributed systems: from
primitives to applications

● Selected internet protocols and technology

Computer Security:

Part I: Cryptography
● Background in mathematics for cryptography
● Security objectives: Confidentiality, Integrity,

Authenticity
● Symmetric and asymmetric cryptography
● Hash functions and digital signatures
● Protocols for key distribution

Part II: IT-Security and Dependability
● Basic concepts of IT security
● Authentication
● Access control models and mechanisms
● Basic concepts of network security
● Basic concepts of software security
● Basic concepts of web security
● Dependable systems: error tolerance,

redundancy, availability

Information Management:

Part 1: Structured data / databases
Data Modeling:
● Conceptual data models (ER / UML structure

diagrams)
● Conceptual design

 Attachement 1 Page 7 / 10

● Logical data model (relational model)
● Mapping from conceptual to logical model

Relational query languages:
● SQL (in detail)
● Relational Algebra

Database theory:
● Functional dependencies
● Design theory and normalization

Implementation of database systems:
● Physical data storage
● Query processing and optimization
● Transaction processing

Current trends in databases:
● Main-memory databases & Column-based data

storage
● NoSQL databases
● Big Data Systems

Part 2: Unstructured Data / Text Processing
Basics of unstructured data:
● Storage and encoding of unstructured text
● Creating and annotating text corpora
● Lexical resources and knowledge bases

Natural Language Processing:
● Segmentation
● Syntactic and semantic analysis
●
Other Applications for unstructured data:
● Information Retrieval
● Information Extraction

Advanced Topics:
● Introduction to research data management
● Data curation and visualization
● Documentation and archiving
Software Engineering:

● Requirements Analysis
● Domain Modelling

 Attachement 1 Page 8 / 10

● Object-oriented Analysis and Design
● Software Architecture
● Software Quality, in particular:

o Verification (among others, testing and
static analysis)

o Software Metrics
● Design Patterns
● Refactoring
● Software Evolution and Software Variability

Modeling, Specification and Semantics:

● Models and their significance for Computer

Science
● Introduction to discrete modeling using

mathematical logic and algebraic concepts
● Interpretation and faithfulness of formal models
● Abstraction, refinement, composition, and

decomposition of models
● Systematic construction of models and deliberate

design decisions
● Syntax and operational semantics of

programming languages
● Introduction to specification languages
● Syntax and denotational semantics of formal

specification languages
● Elementary proof techniques and their use
● Modeling of systems and of requirements
● Modeling of coordination and communication in

concurrent systems

Visual Computing:

● Basics of perception
● Basic Fourier transformation
● Images, filtering, compression & processing
● Basic object recognition
● Geometric transformations
● Basic 3D reconstruction
● Surface and scene representations
● Rendering algorithms
● Color: Perception, spaces & models
● Basic visualization

 Attachement 1 Page 9 / 10

Introduction to Artificial Intelligence

Foundations:
● Introduction, History of AI
● Intelligent Agents

Search:
● Uninformed Search
● Heuristic Search
● Local Search
● Constraint Satisfaction Problems
● Games: Adversarial Search

Planning:
● Planning in State Space
● Planning in Plan Space

Decisions under Uncertainty:
● Uncertainty and Probabilities
● Bayesian Networks
● Decision Making

Machine Learning:
● Neural Networks
● Reinforcement Learning

Philosophical Foundations

Probabilistic methods in computer science:

● Basics from probability theory, statistics and

information theory.
● Probabilistic approaches to graph-based

modeling in computer science
● Basic probabilistic problems and use of

probabilistic methods
o in practical computer science (e.g. run-time

analysis of programs, data compression),
o in technical computer science (e.g., reliability

of hardware, caching), and
o in applied computer science (e.g., simulation

of stochastic systems, probabilistic robotics).
● Selected randomized algorithms, their analysis by

'The Probabilistic Method', algorithms for
automated decision making and optimization

 Attachement 1 Page 10 / 10

● Application of probabilistic methods in artificial
intelligence (e.g. learning methods, neural
networks) and data science

● Implementation of probabilistic methods by
means of practical programming examples

Scientific Computing:

● Fundamentals of scientific modeling and "The

Scientific Method".
● Modeling and system description using the

example of mechanical systems
● Problem specification for the simulation of

complex models
● Model building and identification using the

example of mechanical systems
● Model analysis of static systems by numerical

methods for the solution of linear and nonlinear
systems of equations

● Model analysis and simulation of dynamic
models by initial value problems with ordinary
differential equations

● Implementation of models and simulations using
examples e.g. from robotics and other fields

● Validation of models and simulations using
measured data

● Applications in the simulation and control of
robots as well as physics-based animation and
computer games

