

Below you will find a tabular overview of the compulsory and core courses of the bachelor's degree in Computer Science at TU Darmstadt, once a short version and once including a short description of the learning content. Please add to the table in the right-hand column the successfully completed courses/modules of your previous degree programmes in which, in your view, equivalent content to the corresponding courses was provided. It is not necessary for admission that all listed courses have been covered in terms of content, but partially covered courses will only be counted partially. At least 60 ECTS are needed to fulfill the requirements.

Compulsory and core courses at TU Darmstadt	Successfully completed courses with comparable content (Credits/Units)
Functional and Object-oriented Programming Concepts	
Algorithms and Data Structures	
Digital Design	
Computer Organisation	
Parallel Programming	
Operating Systems	
Introduction to Compiler Construction	
Automata, Formal Languages and Decidability	
Propositional Logic and Predicate Logic	
Formal Methods in Software Design	
Computer Networks and Distributed Systems	
Computer Security	
Information Management	
Software Engineering	
Modeling, Specification and Semantics	
Visual Computing	
Introduction to Artificial Intelligence	
Probabilistic methods in computer science	
Scientific Computing	

pro Scie	npulsory and core courses of the degree gramme "Bachelor of Science in Computer ence" of the Department of Computer Science at Darmstadt	Successfully completed courses with equivalent content
Fu	nctional and Object-oriented	
Pro	ogramming Concepts:	
•	Basic concepts of programming languages Foundations of functional programming languages Foundations of object-oriented programming languages Design and implementation of small software systems Basic type systems Fundamental data structures and algorithms and their complexity Recursion Simple I/O Basics of testing	
•	Basics of testing	
•	Documenting source code	
•	gorithms and Data Structures: Data structures: array, list, binary search tree, B- tree, graph representation, hash table, heaps Algorithms: sorting algorithms, string matching, graph traversal, insertion, search, and deletion for data structures, shortest path search, minimal spanning trees Asymptotic complexity: run times, Big O notation, complexity classes P and NP, NP completeness Algorithmic strategies. for example: Divide-and- Conquer, dynamic programming, brute-force, greedy, backtracking, meta heuristics	
•	Digital Design: digital abstraction and its technological realization, number systems, logic gates, MOSFET transistors and CMOS gates, power consumption Combinational Logic Design: boolean equations and algebra, mapping equations to gates, multi- level logic circuits, four-valued logic (0,1,X,Z), logic minimization, combinational building blocks, timing	

 Sequential Logic Design: latches, flip-flops, synchronous logic design, finite-state mach timing, parallelism 	
 Hardware Description Languages: modelin combinational and sequential circuits, stru modeling, modeling of finite-state machine data types, parametrized modules, testber 	es,
 Digital Building Blocks: arithmetic circuits, /floating-point representations, sequentia building blocks, memory arrays, logic array 	fixed- I
Computer Organisation:	
 Architecture of Microprocessors: programmassembly and machine language, addressimmodes, tool flows, run-time environment Microarchitecture: instruction set and architectural state, performance analysis, microarchitectures with single-cycle/multicycle/pipelined execution, exception hand advanced microarchitectures Memory and I/O-Systems: performance analysis, interfaces 	ng ling, alysis,
Parallel programming:	
 Foundations of parallel systems Parallel architectures Programming models for parallel computin Parallel algorithms Significant practical programming exercise covering the above topics If necessary introduction to base programma languages 	s
Operating Systems:	
 Introduction to Operating Systems (OS) - R purpose and design issues Processes and Threads - OS structures, procontrol, abstractions, kernel/user modes a operations, context switching, interrupts Inter-Process Communication - Message pairs, interfaces, hierarchies 	cess nd

•	Coordination: Deadlocks - Process coordination,
	critical sections, deadlock characterization, deadlock detection and recovery, deadlock
	avoidance
•	Scheduling/Resource Management - Task
	ordering, preemptive and non-preemptive
	scheduling, schedulers and policies, OS
	implementations
•	Concurrency: Races, Mutual Exclusions - Critical
	sections, races, spin locks, synchronization
•	Programming Abstractions: Semaphores - Semaphores, Monitors
•	Memory Management - Storage structures,
	management/replacements approaches, virtual
	memory, paging, caching, segmentation
•	I/O - Device management, drivers, segmentation,
	interrupt handling, DMA
•	File systems - File systems requirements, design and implementation, file structures, directories,
	naming, partitions, virtual file systems
•	Fault Tolerance/Resilience - Fault types, fault
	handling approaches, reliable message delivery,
	OS reliability and availability, security issues
•	Embedded/RT OS - Memory/disk/performance
	management, recovery, fault-tolerances, real-
	time aspects
•	Distributed OS - Distributed computation and
	communication abstractions, synchronization,
	coordination, consistency
•	Virtual Machines - Purpose and types of
	virtualization, virtual file systems, Hypervisors
Int	troduction to Compiler Construction:
•	Structure of compilers
•	Context-free grammars for the description of
	language syntax
•	Lexing and parsing techniques
•	Intermediate representations
•	Semantic analysis
•	Run-time organisation
•	Code generation
•	Software tools for compiler constructions
•	Implementation techniques for compilers
ľ	

		1
	tomata, Formal Languages and	
De	cidability:	
•	Introduction: transition systems, words, languages Basic mathematical methods and proof patterns Finite automata and regular languages, determinism and nondeterminism, closure properties and automata constructions, Kleene Theorem, Myhill-Nerode Theorem, pumping lemma Grammars and the Chomsky hierarchy, context- free languages, pumping lemma, CYK algorithm; Models of computation: PDA and Turing	
	machines	
•	Decidability and recursive enumerability in the Chomsky hierarchy	
Pro	opositional Logic and Predicate Logic:	
•	syntax and semantics of propositional logic, functional completeness and normal forms, compactness, complete proof calculi: resolution and a sequent calculus	
•	Syntax and semantics of first-order logic, structures and assignments, normal forms, skolemization, Herbrand theorem, compactness, complete proof calculi: (ground) resolution and a sequent calculus, Gödel's Completeness Theorem	
•	Undecidability of first-order logic;	
•	optional: digressions on expressiveness and model checking	
Fo	rmal Methods in Software Design:	
•	Modelling of concurrent software with the ProMeLa language	
•	Formalisation of safety and liveness properties in propositional temporal logic	
•	Theoretical Foundations of Model Checking	
•	Verification of ProMeLa programs using the model checker SPIN	
•	Syntax, semantics, and sequent calculus for typed first-order logic	
•	Foundations of the contract-based software specification language JML	
•	Dynamic logic as a first-order program logic	
•	Formal software verification by symbolic execution and invariant reasoning	

•	Tool-based verification of Java programs with the verification system KeY	
	Computer Networks and Distributed Systems:	
•	Foundations: Services, protocols, connection, layer model	
•	Role of link layer, network layer, transport layer, application layer	
•	Basic mechanisms (algorithms, protocols) for multiplexing, broadcast, multicast, routing and forwarding	
•	Quality of service and reliability: definition and mechanisms	
•	Coordination in distributed systems: from primitives to applications	
•	Selected internet protocols and technology	
Со	mputer Security:	
Par	t I: Cryptography	
•	Background in mathematics for cryptography	
•	Security objectives: Confidentiality, Integrity, Authenticity	
•	Symmetric and asymmetric cryptography	
•	Hash functions and digital signatures	
•	Protocols for key distribution	
Par	t II: IT-Security and Dependability	
•	Basic concepts of IT security	
•	Authentication	
•	Access control models and mechanisms	
•	Basic concepts of network security	
•	Basic concepts of software security	
•	Basic concepts of web security	
•	Dependable systems: error tolerance, redundancy, availability	
Inf	ormation Management:	
Par	t 1: Structured data / databases	
	a Modeling:	
•	Conceptual data models (ER / UML structure diagrams)	
•	Conceptual design	

•	Logical data model (relational model)
•	Mapping from conceptual to logical model
Rela	ational query languages:
•	SQL (in detail)
•	Relational Algebra
•	Relational Algebra
Dat	abase theory:
•	Functional dependencies
•	Design theory and normalization
Imp	elementation of database systems:
•	Physical data storage
•	Query processing and optimization
•	Transaction processing
Cur	rent trends in databases:
•	Main-memory databases & Column-based data
	storage
•	NoSQL databases
•	Big Data Systems
Par	t 2: Unstructured Data / Text Processing
Bas	ics of unstructured data:
•	Storage and encoding of unstructured text
•	Creating and annotating text corpora
•	Lexical resources and knowledge bases
	5
Nat	ural Language Processing:
•	Segmentation
•	Syntactic and semantic analysis
•	
Oth	er Applications for unstructured data:
•	Information Retrieval
•	Information Extraction
-	
Adv	vanced Topics:
•	Introduction to research data management
•	Data curation and visualization
	Documentation and archiving
5	
201	ftware Engineering:
•	Requirements Analysis
•	Domain Modelling

•	Object-oriented Analysis and Design
•	Software Architecture
	Software Quality, in particular:
	• Verification (among others, testing and
	static analysis)
	 Software Metrics
•	Design Patterns
•	Refactoring
•	Software Evolution and Software Variability
Mo	deling, Specification and Semantics:
•	Models and their significance for Computer Science
•	Introduction to discrete modeling using
	mathematical logic and algebraic concepts
•	Interpretation and faithfulness of formal models
•	Abstraction, refinement, composition, and decomposition of models
•	Systematic construction of models and deliberate design decisions
•	Syntax and operational semantics of programming languages
•	Introduction to specification languages
•	Syntax and denotational semantics of formal specification languages
•	Elementary proof techniques and their use
•	Modeling of systems and of requirements
•	Modeling of coordination and communication in
	concurrent systems
Vis	ual Computing:
•	Basics of perception
	Basic Fourier transformation
•	Images, filtering, compression & processing
•	Basic object recognition
•	Geometric transformations
•	Basic 3D reconstruction
•	Surface and scene representations
•	Rendering algorithms
•	Color: Perception, spaces & models

Int	roduction to Artificial Intelligence	
Fοι	undations:	
•	Introduction, History of Al	
•	Intelligent Agents	
	irch:	
•	Uninformed Search	
•	Heuristic Search	
•	Local Search	
•	Constraint Satisfaction Problems	
•	Games: Adversarial Search	
Pla	nning:	
•	Planning in State Space	
•	Planning in Plan Space	
De	cisions under Uncertainty:	
•	Uncertainty and Probabilities	
•	Bayesian Networks	
•	Decision Making	
Ma	chine Learning:	
•	Neural Networks	
•	Reinforcement Learning	
Phi	losophical Foundations	
Pro	obabilistic methods in computer science:	
•	Basics from probability theory, statistics and	
	information theory.	
•	Probabilistic approaches to graph-based	
	modeling in computer science	
•	Basic probabilistic problems and use of	
	probabilistic methods	
	 in practical computer science (e.g. run-time 	
	analysis of programs, data compression),	
	\circ in technical computer science (e.g., reliability	
	of hardware, caching), and	
	o in applied computer science (e.g., simulation	
	of stochastic systems, probabilistic robotics).	
•	Selected randomized algorithms, their analysis by	
	'The Probabilistic Method', algorithms for	
	automated decision making and optimization	

 Application of probabilistic methods in artificial intelligence (e.g. learning methods, neural networks) and data science Implementation of probabilistic methods by means of practical programming examples Scientific Computing: 	
 Fundamentals of scientific modeling and "The Scientific Method". Modeling and system description using the example of mechanical systems Problem specification for the simulation of complex models Model building and identification using the example of mechanical systems Model analysis of static systems by numerical methods for the solution of linear and nonlinear systems of equations Model analysis and simulation of dynamic models by initial value problems with ordinary differential equations Implementation of models and simulations using examples e.g. from robotics and other fields Validation of models and simulations using measured data Applications in the simulation and control of robots as well as physics-based animation and computer games 	