

Explanation:

Below you will find a tabular overview of the topics for the entrance exam for the study programs M.Sc. Artificial Intelligence and Machine Learning, M.Sc. Computer Science and M.Sc. IT Security for the admission to the winter term 2024/25 as well as book recommendations for the preparation for the same.

Topic of the entrance exam	Short overview of the content	Book recommendations
Algorithms and Data Structures	 Data structures: array, list, binary search tree, B-tree, graph representation, hash table, heaps Algorithms: sorting algorithms, string matching, graph traversal, insertion, search, and deletion for data structures, shortest path search, minimal spanning trees Asymptotic complexity: run times, Big O notation, complexity classes P and NP, NP completeness Algorithmic strategies. for example: Divide-and-Conquer, dynamic programming, brute-force, greedy, backtracking, meta heuristics 	Introduction to Algorithms (3rd ed.); Cormen, Leiserson, Rivest, Stein; MIT Press
Parallel Programming	 Foundations of parallel systems Parallel architectures Programming models for parallel computing Parallel algorithms Significant practical programming exercises covering the above topics If necessary introduction to base programming languages 	Using MPI William Gropp, Ewing Lusk, Anthony Skjellum, 3rd edition, MIT Press Parallel Programming in OpenMP R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Meno, Morgan Kaufmann Programming Massively Parallel Processors David B. Kirk, Wen-mei W. Hwu, 2nd edition, Morgan Kaufmann
Introduction to Compiler Construction	 Structure of compilers Context-free grammars for the description of language syntax Lexing and parsing techniques Intermediate representations 	Programming Language Processors in Java; Watt/Brown

Automata, Formal Languages and Decidability Computer Security	 Run-time organisation Code generation Software tools for compiler constructions Implementation techniques for compilers Introduction: transition systems, words, languages Basic mathematical methods and proof patterns Finite automata and regular languages, determinism and nondeterminism, closure properties and automata constructions, Kleene Theorem, Myhill-Nerode Theorem, pumping lemma Grammars and the Chomsky hierarchy, context-free languages, pumping lemma, CYK algorithm; Models of computation: PDA and Turing machines Decidability and recursive enumerability in the Chomsky hierarchy Part I: Cryptography Background in mathematics for 	Introduction to Automata Theory, Languages, and Computation (3rd ed.); Hopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D. (2013); Pearson. M. Bishop, Computer Security: Art and Science, Addison Wesley, 2018
	cryptography Security objectives: Confidentiality, Integrity, Authenticity Symmetric and asymmetric cryptography Hash functions and digital signatures Protocols for key distribution Part II: IT-Security and Dependability Basic concepts of IT security Authentication Access control models and mechanisms Basic concepts of network security	P.C.van Oorschot: Computer Security and the Internet, Springer, 2021 J. Katz, Y. Lindell: Introduction to Modern Cryptography, Chapman & Hall, 2020

	 Basic concepts of software security Basic concepts of web security Dependable systems: error tolerance, redundancy, availability 	
Software Engineering	 Requirements Analysis Domain Modelling Object-oriented Analysis and Design Software Architecture Software Quality, in particular: Verification (among others, testing and static analysis) Software Metrics Design Patterns Refactoring Software Evolution and Software Variability 	Software Engineering; Ian Sommerville; Pearson Design Patterns - Elements of Reusable Object-Oriented Software; E. Gamma, R. Helm, R. Johnson, J. Vlissides; Prentice Hall Writing Effective Use Cases; A. Cockburn; Pearson
Visual Computing	 Basics of perception Basic Fourier transformation Images, filtering, compression & processing Basic object recognition Geometric transformations Basic 3D reconstruction Surface and scene representations Rendering algorithms Color: Perception, spaces & models Basic visualization 	R. Szeliski, "Computer Vision: Algorithms and Applications", Springer 2011 B. Blundell, "An Introduction to Computer Graphics and Creative 3D Environments", Springer 2008
Introduction to Artificial Intelligence	Foundations: Introduction, History of AI Intelligent Agents Search: Uninformed Search Heuristic Search Local Search Constraint Satisfaction Problems Games: Adversarial Search	Artificial Intelligence: A Modern Approach,;Stuart Russell, Peter Norvig; Pearson

	Planning: Planning in State Space Planning in Plan Space Decisions under Uncertainty: Uncertainty and Probabilities Bayesian Networks Decision Making	
	Machine Learning: • Neural Networks • Reinforcement Learning Philosophical Foundations	
Probabilistic methods in computer science:	 Basics from probability theory, statistics and information theory. Probabilistic approaches to graph-based modeling in computer science Basic probabilistic problems and use of probabilistic methods in practical computer science (e.g. run-time analysis of programs, data compression), in technical computer science (e.g., reliability of hardware, caching), and in applied computer science (e.g., simulation of stochastic systems, probabilistic robotics). Selected randomized algorithms, their analysis by 'The Probabilistic Method', algorithms for automated decision making and optimization Application of probabilistic methods in artificial intelligence (e.g. learning methods, neural networks) and data science Implementation of probabilistic methods by means of practical programming examples 	M. Mitzenbacher, E. Upfahl: Probability and Computing, Cambridge University Press S.H. Chan: Probability for Data Science, Michigan University Press K. P. Murphy: Probabilistic Machine Learning, MIT Press D.J.C. MacKay: Information Theory, Inference, and Learning Algorithms, Cambridge University Press

Computer Networks and Distributed	
Systems	

- Overview of networked and distributed systems, which are a fundamental building block of modern computer science. The course covers fundamental concepts of designing, modelling, planning and evaluating networked and distributed systems.
- Foundations: Services, protocols, connection, layer model
- Role of link layer, network layer, transport layer, application layer
- Basic mechanisms (algorithms, protocols) for multiplexing, broadcast, multicast, routing and forwarding
- Quality of service and reliability: definition and mechanisms
- Coordination in distributed systems: from primitives to applications
- Selected internet protocols and technology

J. Kurose, K. Ross: Computer Networks, Pearson Education 2021 (also in german)

M. van Steen, A. Tanenbaum: Distributed Systems, distributedsystems.net, 2017.

Selected chapters of

G. Coulouris, J. Dollimore, T. Kindberg: Distributed Systems – Concept and Design, Pearson Studium

A. Tanenbaum, D. Wetherall: Computer Networks, Pearson Education 2012 (also in german)

W.R. Stevens: Unix Network Programming, Volume 1: The Sockets Networking API (Addison Wesley)