
Andreas Vogel
G-CSC

University of Frankfurt

I. Heppner, S. Reiter, A. Vogel, G. Wittum
GCSC, Goethe-University of Frankfurt, Germany

Software-Framework ug 4 -
Geometric MultiGrid Scaling

NuSim - Meeting, Darmstadt, 16. April 2012

Andreas Vogel
G-CSC

University of Frankfurt

Neuron network and volume geometry.

CAD- and volume geometry of heating plate.

Examples of
work of our

group.

Motivation

Andreas Vogel
G-CSC

University of Frankfurt

Outline
• Programm Framework

• Parallel Communication Layer (pcl)

• Distributed Grids

• Distributed Algebra for Multigrid

• Scaling Study

• Weak scaling of Laplace Problem in 2d

• Weak scaling of Laplace Problem in 3d

• Real world Problem: Density Driven Flow

Andreas Vogel
G-CSC

University of Frankfurt

Software Framework

• Software Framework ug („unstructured grids“) for solution of
partial differential equations, general purpose library

• Novel implementation ug 4:
• Grids and Algebra - completely independent
• Algebra structures using cache aware storage (CRS)
• Parallel Communication Layer (pcl) - based on MPI

Andreas Vogel
G-CSC

University of Frankfurt

Parallel Communication Layer (pcl)

• Objects are grouped in
interfaces,

• Interfaces connect groups of
elements on different processes,

• Interfaces are grouped in
Layouts,

• Communication can be
scheduled for interfaces or
layouts.

Schematic Overview

IAB

Objects

IAC

Layout A

IBA

Layout B

ICA

Layout C

pcl infrastructure

Abstract handling of arbitrary objects (e.g. grid elements, algebra
indices) that need connection to copies on other processes

Andreas Vogel
G-CSC

University of Frankfurt

Parallel Communication Layer (PCL)

• Template library for point-to-point communication between
abstract object sets.

• Highly adoptable to different graph-structures (e.g. grids or
algebra).

• Minimal storage overhead - only references to interfacing objects
are stored.

• Identification of objects through local order in process-interfaces.
No global IDs required - but can still be generated on request.

Andreas Vogel
G-CSC

University of Frankfurt

Horizontal Grid Layout

• Distinction in master- and slave-interfaces.
• Communication master→slave or slave→master (not slave→slave).
• Separate layouts for vertices, edges, faces and volumes on each

level.
• Allows communication only within one grid level.

6 Sebastian Reiter, Andreas Vogel, Martin Rupp, and Gabriel Wittum

In order to define a clear communication structure we introduced the fol-
lowing layout-types for the implementation of our parallel multi-grid:

• horizontal master layouts,
• horizontal slave layouts,
• vertical master layouts,
• vertical slave layouts.

Separate horizontal layouts exist for the vertices and edges – and in 3d
faces – of a grid, separate vertical layouts exist for vertices, edges, faces and
volumes.

In figure 1 an example is given on how the horizontal interfaces of a dis-
tributed triangular grid look like. To keep things simple only the interfaces
for the grid vertices on a single level are depicted.

Note that while a slave node on each process is a member of exactly one
slave interface, master nodes may be shared between several master interfaces.
Also note that a node is either in a master or in a slave interface or in no
interface at all. Master and slave interfaces are gathered in master- / slave-
layouts on each process, which simplifies communication.

In figure 2 horizontal and vertical interfaces for a one dimensional hierar-
chical grid distributed on two processes are depicted.

P0

P1

P2

I0,1
I1,0

I0,2
I2,0

I1,2

I2,1

master interface, slave interface.

Fig. 1. Horizontal interfaces Ia,b for the vertices of a distributed grid on three
processes P0, P1, P2. On the left hand the original serial grid is depicted.

We decided that slave objects in a grid should not be directly connected
with each other through interfaces. While this would be possible using the pcl–
and indeed is used in some solver implementations – we decided against it for
the grid parallelization. First of all those additional interfaces are not required
for tasks like adaptive refinement or dynamic redistribution and would only
introduce unnecessary maintenance. Secondly one can exchange data between

Serial- (left) and distributed-grid (right). Vertex-interfaces are depicted. (S. Reiter)

Andreas Vogel
G-CSC

University of Frankfurt

MultiGrid Layout Serial

Lev 0

Lev 1

Lev 2

Lev 3

1D Example: Coarse grid with 2 elements, the grid levels are produced using uniform refinement.

Degree of Freedom

Andreas Vogel
G-CSC

University of Frankfurt

MultiGrid Layout*

Lev 0

Lev 1

Lev 2

Lev 3

Process 0 Process 1

1D Example for 2 PE: Starting with one element on each of PE, the grid levels are produced using uniform refinement.

Degree of Freedom

horizontal Index Interface

Andreas Vogel
G-CSC

University of Frankfurt

MultiGrid Layout

Lev 0

Lev 1

Lev 2

Lev 3

Process 0 Process 1

Degree of Freedom

horizontal Index Interface

vertical Index Interface

Andreas Vogel
G-CSC

University of Frankfurt

Multi-Grid Distribution

• Idea:
• Load coarse grid on 1 proc,
• perform refinement,
• distribute top level,
• perform further refinement,
• solve

• Observation:
• Involves a one-to-all communication of big data chunks during startup.
• Restriction / Prolongation involves all-to-one and one-to-all communication.

Distribution of a multi-grid

P 0 P 1

Andreas Vogel
G-CSC

University of Frankfurt

MultiGrid and Interfaces

• Vertical interfaces are required to allow distribution of parts of a
multi-grid hierarchy.

• Smoothing using horizontal interfaces.
• Prolongation / Restriction using vertical interfaces.

P 0 P 1

Andreas Vogel
G-CSC

University of Frankfurt

Hierarchical Redistribution

• Idea:
• load grid on one process,
• refine grid on all processes, which have a grid,
• distribute top level to some free processes,
• iterate...

• Infinitely many vertical interfaces

P1 P2 P3 P4

Andreas Vogel
G-CSC

University of Frankfurt

Hierarchical Redistribution

P0

P0 P1 P2 P3 ... P..

P.. P.. P.. P.. ... P..P0 ...

...

• Tree of agglomarations of processes

Andreas Vogel
G-CSC

University of Frankfurt

MultiGrid

• Geometric Multi - Grid Solver:
• Coarse Grid Matrices assembled on coarser grids
• usual Prolongation / Restriction, taking into account the vertical

interfaces
• Smoother: Jacobi, Gauss-Seidel, ILU, ...
• Coarse Problem Solver: LU - Factorization or iterative linear solvers

Andreas Vogel
G-CSC

University of Frankfurt

Scaling Tests
• Model problem: -∆u=f on Ω=[0,1]×[0,1],

• with f(x,y)=(2π)2(sin(2πx)+sin(2πy)),

• and u(x,y)=sin(2πx)+sin(2πy) on ∂Ω,

• Analogical for 3d,
• Calculations were performed on JuGene, FZ Jülich, Germany,
• Discretization: vertex-centered finite volume,
• Solver: geometric multi-grid method with Jacobi smoother.

Ingo Heppner

G-CSC

Universität Frankfurt

2-D-Lösung (numerische Näherung)

8 / 18

Andreas Vogel
G-CSC

University of Frankfurt

Weak scaling 2d

Scaling study for the weak scaling of the laplace problem on a unit square [0,1]2. Initial grid with 8x8 quadrilaterals and
uniform refinement for each grid level. Solving of the linear equation system is done using a geometric multigrid solver with
Jacobi smoother. All computations need 10 iterations until a defect norm of 10-12 is reached. No problem specific
optimizations have been made. Load per process ~65,500 DoFs.
(Abbreviations are: PE = Processing entities (cores), DoF = Degrees of Freedom; Ttotal = total run time, Tassemble = time for
assembling of system matrix and coarse grid matrices, Tsolver = time for solver; parallel Speedup S(P4, Pi) = (T4·Pi)/(Ti·P4),
Efficiency E = T4/Ti).

 #PE level #DoF Ttotal (s) Tassemble (s) Tsolver (s) Tass+solve (s) Efficiency (%)
(ass+solve)

Speedup
(ass+solve)

Speedup
ideal

Efficiency
(%) (solve)

Speedup
(solve)

4 6 263,169 13.242 2.456 2.608 5.064 -- -- -- -- --
16 7 1,050,625 13.305 2.449 2.653 5.102 99.2 4.0 4 98.3 3.9
64 8 4,198,401 13.416 2.443 2.694 5.136 98.6 15.8 16 96.8 15.5

256 9 16,785,409 13.677 2.423 2.752 5.175 97.8 62.6 64 94.8 60.6
1,024 10 67,125,249 16.053 2.416 2.800 5.216 97.1 248.5 256 93.1 238.4
4,096 11 268,468,225 18.724 2.440 2.854 5.294 95.7 979.5 1,024 91.4 935.7

16,384 12 1,073,807,361 20.787 2.427 2.934 5.360 94.5 3,869.6 4,096 88.9 3,641.5
65,536 13 4,295,098,369 23.844 2.430 3.023 5.452 92.9 15,216.6 16,384 86.3 14,136.3

262,144 14 17,180,131,329 61.612 2.423 3.162 5.585 90.7 59,424.0 65,536 82.5 54,051.5

Andreas Vogel
G-CSC

University of Frankfurt

Weak scaling 2d

0

1

2

3

3

4

5

6

4 16 64 256 1,024 4,096 16,384 65,536 262,144

w
al

l c
lo

ck
 t

im
e

[s
]

Number of cores (PE)

time assembling
time solver
time ass + solver

Andreas Vogel
G-CSC

University of Frankfurt

Weak scaling 2d

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

16 64 256 1,024 4,096 16,384 65,536 262,144

S
p

ee
d

up

Number of cores (PE)

Speedup ass+solver
Speedup solver
Speedup ideal

Andreas Vogel
G-CSC

University of Frankfurt

Weak scaling 3d

Scaling study for the weak scaling of the laplace problem on a unit cube [0,1]3. Initial grid with 2x2x2 hexahedrons and
uniform refinement for each grid level. Solving of the linear equation system is done using a geometric multigrid solver with
Jacobi smoother until a defect norm of 10-12 is reached. No problem specific optimizations have been made.
(Abbreviations are: PE = Processing entities (cores), DoF = Degrees of Freedom; Ttotal = total run time, Tassemble = time for
assembling of system matrix and coarse grid matrices, Tsolver = time for solver).

 #PE level #DoF Ttotal (s) Tassemble (s) Tsolver (s) Tass+solve (s)
Efficiency (%)

(ass+solve)
Speedup

(ass+solve)
Speedup

ideal
Efficiency
(%) (solve)

Speedup
(solve)

1 4 35,937 14.568 4.451 2.516 6.967 -- -- -- -- --
8 5 274,625 16.311 4.711 2.657 7.368 94.6 7.6 8 94.7 7.6

64 6 2,146,689 19.584 4.705 2.835 7.540 92.4 59.1 64 88.8 56.8
512 7 16,974,593 18.810 4.691 2.935 7.626 91.4 467.7 512 85.7 438.8

4,096 8 135,005,697 23.129 4.720 2.956 7.676 90.8 3,717.6 4,096 85.1 3,485.9
32,768 9 1,076,890,625 24.980 4.686 3.215 7.900 88.2 28,897.9 32,768 78.3 25,647.7

262,144 10 8,602,523,649 52.422 4.713 3.073 7.786 89.5 234,575.1 262,144 81.9 214,661.2

Andreas Vogel
G-CSC

University of Frankfurt

Weak scaling 3d

0

1

2

3

5

6

7

8

1 8 64 512 4,096 32,768 262,144

w
al

l c
lo

ck
 t

im
e

[s
]

Number of cores (PE)

time assembling
time solver
time ass + solver

Andreas Vogel
G-CSC

University of Frankfurt

Weak scaling 3d

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

8 64 512 4,096 32,768 262,144

S
p

ee
d

up

Number of cores (PE)

Speedup ass+solver
Speedup solver
Speedup ideal

Andreas Vogel
G-CSC

University of Frankfurt

Observations

• Number of target processes during vertical distribution is crucial
• At most 512 target processes allows to hide the „one to many“

communication during prolongation / restriction
• In run for 256Ki cores 3 levels of hierarchical distribution necessary

• Usage of shared libraries are possible on Jugene (Jülich, Germany). But for
very large number of processes the start up time increases dramatically.

• Using statically build binaries is recommendable

Andreas Vogel
G-CSC

University of Frankfurt

Density Driven Flow

∂t(φρ) +∇ · (ρq) = 0

∂t(φρω) +∇ · (ρωq− ρD(q) ·∇ω) = 0

q = −K

µ
· (∇p− ρg)

ω = Mass fraction of brine

Governing equations: Two nonlinear, coupled PDE

= Pressurep
ρ(ω)
µ(ω)

= Density
= Viscosity

Unknowns: Material laws:
φ
Parameters:

g
K

= Porosity

= Permeability

= Gravity

Transport of saltwater in porous media
[cf. Bear `91, Leijnse `92, Holzbecher `98, ...]

Andreas Vogel
G-CSC

University of Frankfurt

Elder Problem
• Boundary Conditions:

• Model: Boussinesq - Approximation
• Discretization: vertex-centered finite volume
• Upwinding: exponential
• Time-stepping: fully implicit

• Newton-Method with assembled Jacobian
• Solver: BiCGStab with GMG Preconditioner with ILU Smoother

Andreas Vogel
G-CSC

University of Frankfurt

Density Driven Flow

#PE Level #TimeSteps # DoF Tassemble [s] TlinSolver (Total) [s] Avg Lin Iters Tgmg (each) [s]
64 9 20 8398850 497.28 571.81 7.24 3.95
256 10 20 33574914 476.00 593.36 7.90 3.76
1024 11 20 134258690 474.44 991.08 13.40 3.70
4096 12 20 536952834 475.97 2787.01 37.25 3.74
16384 13 20 2147647490 476.85 1033.36 13.68 3.78

Scaling study for the weak scaling of the elder problem in 2d. Initial grid with 8x2 quadrilaterals and uniform refinement for
each grid level. Solution of the non-linear problem using Newton-iteration. Linearized problems are solved using a BiCGStab
solver with geometric multigrid preconditioner and ilu smoother.
(Abbreviations are: PE = Processing entities (cores), DoF = Degrees of Freedom; Tassemble = time for assembling of system
matrix and coarse grid matrices, TlinSolver = time for linear solver within newton iteration)

Andreas Vogel
G-CSC

University of Frankfurt

Summary

• GMG with hierarchical splitting of processors and gathering during
coarsening is suited for large scale computations.

• Tested for 262144 processes.

• Nice scaling behavior if one-to-many communication for more than 103
target processes is avoided.

Andreas Vogel
G-CSC

University of Frankfurt

Thank you for your attention.

