
Tools for Algorithmic
Differentiation

Keywords: Algorithmic Differentiation, Clang, LLVM, Source Analysis, Source Transformation

Introduction
This document gives a brief introduction to Algorithmic Differentiation (AD, [1]) andwork
related to it at the Scientific Computing Group.

Algorithmic Differentiation (AD)
AD relies on overloading operators in C++ to calculate derivatives.

Operator Overloading
C++ allows for the customization of the semantics of common (elemental) operators
by introducing user-defined types, called operator overloading (overloading) [2]. Using
overloading, the AD type T̃ replaces the floating-point type T (double, float) of the tar-
get code. It overloads all relevant operations and mathematical functions. For each
invoked overloaded operation, a new (temporary) object of type T̃ with updated deriva-
tive values based on the executed operator is returned,

T̃ ◦ T̃ 7→ T̃ .

The operator ◦ represents the operation that is applied to combine the two values of
type T̃ , e.g., a multiplication. This is done with, e.g., an additional derivative value that
is encapsulated in T̃ along the primal (original) value of type T .

Example
The implementation of a (naive) overloading AD tool is shown in Figure 1.

1 class adouble {
2 public:
3 double p; // primal value
4 double d; // derivative value
5
6 adouble(double primal, double deriv=0.0) : p(primal), d(deriv) { }
7 // Multiplication operator overload:
8 adouble operator*(const adouble& other) {
9 return adouble(/*primal =*/ p*other.p,

10 /*deriv. =*/ p*other.d + d*other.p);
11 }
12 };

Figure 1: A minimal AD overloading implementation called adouble. The multiplication
is overloaded, it returns a new object with updated derivatives. Other operators
are implemented equivalently.

The derivative computation is done by changing the type of the target code and execut-
ing it with the new type with a prior seeding, see Figure 2.

Alexander Hück
alexander.hueck@tu-darmstadt.de

Office: S1|22 Room 412
Alexanderstraße 2

64287 Darmstadt
Tel. 06151 16-7 55 77

Date: 18th June, 2020

https://www.sc.informatik.tu-darmstadt.de
mailto:alexander.hueck@tu-darmstadt.de
https://www.sc.informatik.tu-darmstadt.de/fg/location/sc_location.en.jsp


1 double foo(double x) {
2 return x*x*x;
3 }
4 void bar() {
5 double x = 3.0;
6 double y = foo(x);
7 std::cout << y
8 << std::endl;
9 }

10
11

adouble foo(adouble x) {
return x*x*x;

}
void bar() {

adouble x = 3.0;
x.d=1.0; // initial deriv. of x
adouble y = foo(x);
std::cout << y.p

<< y.d
<< std::endl;

}

Figure 2: On the left, the original target code is shown. On the right, the double type is
replaced by the adouble type

Complications
While the application of AD with overloading looks straightforward, the augmentation
can lead to, e.g., many compiler errors and often requires substantial effort to integrate
into existing code bases. For instance, the union class type may cause problems with
the user-defined AD type [3]. Hence, the development efforts concentrate on compiler
tooling, which aims to make the application and use of AD more straightforward.

Tasks
We are interested in students who want to help develop tools powered by compiler tech-
nology [4] to assist with the application of algorithmic differentiation. This pertains to,
e.g.,

(a) static code analysis,
(b) memory tracking for correctness checks, or
(c) source transformations.

Requirements
• Strong fundamentals w.r.t. modern C++

• Knowledge of the CMake build system

• Experience with the Clang and LLVM compiler framework

References
[1] http://www.autodiff.org

[2] https://en.cppreference.com/w/cpp/language/operators

[3] §9.5-1, C++03 Standard

[4] https://clang.llvm.org/docs/LibTooling.html

Alexander Hück
alexander.hueck@tu-darmstadt.de

Office: S1|22 Room 412
Alexanderstraße 2

64287 Darmstadt
Tel. 06151 16-7 55 77

Date: 18th June, 2020

https://www.sc.informatik.tu-darmstadt.de/fg/people/alexander_hueck.en.jsp
http://www.autodiff.org
https://en.cppreference.com/w/cpp/language/operators
https://clang.llvm.org/docs/LibTooling.html
https://www.sc.informatik.tu-darmstadt.de
mailto:alexander.hueck@tu-darmstadt.de
https://www.sc.informatik.tu-darmstadt.de/fg/location/sc_location.en.jsp

