
KEG:
The KeY Exploit Generation tool
User Guide

Huy Q. Do, Richard Bubel, Reiner Hähnle

email: do@cs.tu-darmstadt.de

Software Engineering group
Department of Computer Science
TU Darmstadt

Abstract

This tutorial supplies necessary guidelines on using KEG to check Java program and �nd useful exploits w.r.t.

information �ow security.

1 Introduction

KEG (KeY Exploit Generation) is a tool detecting leakages in Java programs and generating exploits that could help

developers identify vulnerabilities, locate and revise risky source code as well as test their programs with respect to

information �ow security polices.

This tutorial describes step by step how Java programmers can use KEG to check their programs. It contains

following sections:

� 2 JML speci�cation: Introduces about JML speci�cations that are necessary for running KEG

� 3 Speci�cation for Information Flow Security Policies: Describes the syntax specifying for information �ow

security policies, including noninterference and declassi�cation

� 4 Running KEG: Introduces about how to run KEG to check speci�ed Java programs

2 JML speci�cation

KEG uses KeY [1] as the back-end to symbolically analyse Java programs based on proof obligations. Proof obligations

are generated via method contracts (or functional operation contract). To check a method of a Java class, it is necessary

to specify it's method contract in term of JML speci�cation [2]. A method contract normally consists of three parts:

precondition, postcondition and modi�es clause. To check a method by KEG w.r.t. information �ow security, at least

precondition or postcondition must be speci�ed.

KEG solves a method call inside checking method in two ways: inlining the invoked method or using it's own

method contract. The �rst solution is only feasible to simple, bounded methods. If the invoked method itself contains

unbounded loop recursion structures, the second solution must be used. In this case, we have to de�ne full method

contract speci�cation for invoked method, including precondition, postcondition and assignable clause. For more

detail about method contract speci�cation in KeY, please read [1].

If checking method containing itself loop structures, KEG also supplies two solutions: unwinding the loop or using

loop invariant. The �rst solutions is only feasible for bounded loop, whereas the second must be used for resolving

unbounded loop structure. For more detail about specifying loop invariant, please read [1].

Example 2.1. Listing 1 shows an example of method contract and loop invariant speci�cation. Method contract of

magic is speci�ed from line 5 to line line 9. Line 6 de�nes precondition, line 7 is postcondition and line 8 is assignable

clause specifying that the value of l is modi�ed along with the execution of method magic. Lines 14 - 18 de�ne

speci�cation for the next while-loop, which line 15 is loop invariant, line 16 is assignable clause claiming that the

value of m and i will be changed inside the while-loop structure.

3 Speci�cation for Information Flow Security Policies

3.1 Noninterference

Each noninterference policy, treated by KEG as a class-level one, consists of two elements: source (high variables)

and sink (low variables). It prohibits all information �ow from source to sink. To de�ne a noninterference policy, you

have to point out its corresponding source and sink. The syntax specifying a noninterference policy is as followings:

/*! sink | source ; !*/

Where sink and source is two sets of memory locations in the program. They could be not only class's �elds, but also

method's parameters and array's elements. At the moment, KEG only supports primitive type (integer or boolean)

w.r.t. memory locations in source and sink parts.

If there are more than one noninterference policy, they can be de�ned using following syntax:

/*!
sink1 | source1 ;
sink2 | source2 ;
...
sinkn | sourcen ;

!*/

Listing 1: JML speci�cation: method contract and loop invariant

1 public class Loop {
2 public int l;
3 private int x, y;
4

5 /*@
6 @requires x>0;
7 @ensures l==x*y;
8 @assignable l;
9 @*/

10 public void magic(){
11 if (x>0){
12 int m=0;
13 int i=0;
14 /*@
15 @ loop_invariant (i<=x)&&(m==i*y);
16 @ assignable m,i;
17 @ decreases x-i;
18 @*/
19 while (i < x) {
20 m+=y;
21 i++;
22 }
23 l = m;
24 } else l = 0;
25 }
26 }

Example 3.1. Let us look into class Accountant at listing 2. It has �ve �elds and one method. Noninterference

policies are de�ned from line 5 to line 8, which line 5 and line 8 are opening and closing marks for noninterference

speci�cation whereas line 6 and line 7 are two noninterference policies claiming that sum and flag cannot interfere

salaries of a and b; whereas flag cannot interfere password. These policies are class-level which means that they

are applied for all method of class Accountant. Line 9 speci�es precondition of magic that is assumed to be satis�ed

before magic is invoked.

3.2 Declassi�cation

Noninterference is the strongest policy for information �ow security. It is usually too strict for practical applications.

To relax it, declassi�cation policy which allows to leak some information from secret locations can be used. For

instance, back to example 3.1, we might want to allow sum store the total salary of a and b w.r.t. the execution of

method 'codemagic. KEG supports conditional delimited release for declassi�cation and treats it as a method-level

policy which its speci�cation is embedded in method contract speci�cation. The syntax of conditional delimited

release policy is as following:

@escapes released expression E [\if condition C] [\to destinations D];

Above syntax de�nes following declassi�cation policy: secret information can be leaked through expressionE to

destinations D (set of memory locations) if condition C is satis�ed before magic is executed. To use method calls

within expressions E and C, we need to supply them corresponding method contracts.

Example 3.2. Line 8 of listing 3 yields the policy that allows the total salary of a and b to leak to sum if pass > -1

is satis�ed before magic is executed. This policy is re-expressed in listing 4, which escapes hatch expression

(a.salary + b.salary) is replaced by method call sum(a.salary, b.salary). The semantics of method sum

is supplied by its method contract at line 14.

4 Running KEG

KEG currently only supports command line interface. The command to run KEG is:

java -jar 〈〈 path to exploitgen.jar 〉〉 〈〈 Java source file 〉〉 [Options]

Options:

� -li, -loopInv: enables loop invariant usage

2

Listing 2: Class Accountant and class Employee

1 public class Accountant {
2 public int sum,flag;
3 private Employee a, b;
4 private int password;
5 /*!
6 sum flag | a.salary b.salary ;
7 flag | password ;
8 !* /
9 /*@requires true;@*/

10 public void magic(){
11 if(password>0){
12 flag = 1;
13 sum = a.salary + b.salary;
14 }else{
15 flag = 0;
16 sum = 0;
17 }
18 }
19 }
20

21 public class Employee {
22 public int salary;
23 }

Listing 3: Declassi�cation speci�cation

1 public class Accountant {
2 public int sum,flag;
3 private Employee a, b;
4 private int password;
5 /*! sum flag | a.salary b.salary ;
6 flag | password ; !*
7 /*@requires true;
8 @escapes (a.salary + b.salary) \if pass > -1 \to sum ; /
9 @*/

10 public void magic(){
11 ...
12 }
13 }

Listing 4: Method calls inside declassi�cation speci�cation

1 public class Accountant {
2 public int sum,flag;
3 private Employee a, b;
4 private int password;
5 /*! sum flag | a.salary b.salary ;
6 flag | password ; !*
7 /*@requires true;
8 @escapes sum(a.salary, b.salary) \if pass > -1 \to sum ; /
9 @*/
10 public void magic(){
11 ...
12 }
13

14 /*@ensures \result == x + y ; / @*/
15 private int sum(int x, int y){
16 return x+y;
17 }
18

19 }

3

� -mc, -methodCt: enables loop invariant usage

� -a, -about: shows version and copyright information

� -h, -help: displays usage help

� -d, -depth number of depth value: con�gure the value of number of bounded depth level using in investigating

heap structure (default value is 100)

It is convenient to run KEG by adding environment variable PATH the path of KEG's folder. For example, in case

PATH has been con�gured, if we want to check �le Factory.java storing in folder C:\project\accountant using loop

invariant to handle loops and method contract to handle method calls, then the command to check it by KEG is:

java -jar exploitgen.jar C:\project\accountant\Factory.java -li -mc

References

[1] Beckert, B., Hähnle, R., and Schmitt, P. H. Veri�cation of Object-oriented Software: The KeY Approach.

Springer-Verlag, Berlin, Heidelberg, 2007.

[2] Leavens, G. T., Baker, A. L., and Ruby, C. Preliminary Design of JML: A Behavioral Interface Speci�cation

Language for Java. ACM SIGSOFT Software Engineering Notes 31, 3 (2006), 1�38.

4

