
Chapter 6
Abstract Interpretation

Nathan Wasser, Reiner Hähnle and Richard Bubel

6.1 Introduction

The previous chapters focused on the development of a faithful and relatively com-
plete program logic for sequential Java. Consequently we obtain a formal language of
high expressivity and a powerful calculus to prove the stated properties. Nevertheless
expressivity comes with a cost, namely, an unpredictable degree of automation. This
does not necessarily mean interaction with the theorem prover as such, but also
the necessity to provide hand-crafted specifications like loop invariants or method
contracts. The latter often needs to take idiosyncrasies of the theorem prover into
account, at least, in regard of automation. This is also true in cases for which one is
only interested in establishing simple properties like “No NullPointerExceptions
are thrown.”

Other techniques from static program analysis, like abstract interpretation as
introduced by Cousot and Cousot [1977], utilize program abstraction to achieve
full automation. But they pay with loss of precision that manifests itself in reduced
expressivity (often only predefined properties can be expressed and ensured) and
false positives.

In this chapter we show how to integrate abstract interpretation in JavaDL to
achieve high automation while also maintaining high precision. Our approach has
two main characteristics: i) abstraction of the state representation instead of the
program, and ii) full precision until a loop or (recursive) method call is encountered.
Only at those program points is abstraction applied and then only on the state region
which might be modified by the loop or method. All other object fields or local
variables keep their exact symbolic value.

165

166 6 Abstract Interpretation

6.2 Integrating Abstract Interpretation

6.2.1 Abstract Domains

We introduce notions commonly used in abstract interpretation [Cousot and Cousot,
1977]. The core of abstract interpretation is abstract domains for the types occurring
within the program. Each abstract domain forms a lattice and there is a mapping
between each concrete domain DT (i.e., the externalization of a concrete program
type) and its corresponding abstract domain AT . Their relationship is established by
two total functions:

a :2DT ! AT (abstraction function)

g :AT ! 2DT
(concretization function)

The abstraction function maps a set of concrete domain elements onto an abstract
domain element and the concretization function maps each abstract domain element
onto a set of concrete domain elements, such that a(g(a)) = a and C ✓ g(a(C))
holds. A pair of functions with the latter two properties is a special case of a Galois
connection called Galois insertion. Figure 6.1 illustrates such a mapping. The arrows
represent the concretization (from wheel to vehicle) and abstraction function (from
vehicle to wheel).

Figure 6.1 An example abstract domain: The concrete domain of vehicles is abstracted w.r.t. the
number of wheels

We can now summarize the above into a formal definition of an abstract domain.

Definition 6.1 (Abstract Domain). Let D be a concrete domain (e.g., from a first-
order structure). An abstract domain A is a complete lattice with partial order v
and join operator t. It is connected to D with an abstraction function a : 2D ! A
and a concretization function g : A ! 2D which form a Galois insertion [Cousot and
Cousot, 1977], i.e. a(g(a)) = a and C ✓ g(a(C)). In this chapter we only deal with
countable abstract domains.

Let f : A ! A be any function. The monotonic function f 0 : A ! A is defined as
f 0(a) = at f (a). If A satisfies the ascending chain condition (trivially the case if

6.2. Integrating Abstract Interpretation 167

A has finite height), then starting with any initial input x 2 A a least fixed point for
f 0 on this input can be found by locating the stationary limit of the sequence hx0ii,
where x00 = x and x0n+1 = f 0(x0n).

Abstract interpretation makes use of this when analyzing a program. Let p be
a loop, x the only variable in p and a 2 A the abstract value of x before execution
of the loop. Then we can see f as the abstract semantic function of a single loop
iteration on the variable x. The fixed point for f 0 is an abstract value expressing
an overapproximation of the set of all values of x before and after each iteration.
Therefore it is sound to replace the loop with the assignment x = a.

If A does not satisfy the ascending chain condition, there may not be a stationary
limit for hx0ii. In these cases a widening operator is required.

Definition 6.2 (Widening Operator ·—·). A widening operator for an abstract do-
main A is a function — : A⇥A ! A, where

1. 8a,b 2 A. a v a—b
2. 8a,b 2 A. b v a—b
3. for any sequence hy0ni and initial value for x00 the sequence hx0ni is ultimately

stationary, where x0n+1 = x0n—y0n.

If A has a least element ?, it suffices to use this as the initial value for x00, rather
than proving the property for all possible initial values.

Abstract domains come traditionally in two flavors relational and nonrelational.
Advantages with relational abstract domains are expressiveness and the abilities to
easily formulate often-occurring and helpful abstract notions such as i  a.length.
The advantage of nonrelational abstract domains is their ease of use from an imple-
mentation standpoint, as nonrelational abstract domains care only about the actual
variable being updated, rather than having potential to change multiple values at
once. We choose a third path: using nonrelational abstract domains but including
invariant suggestions which can model certain relational-style expressions such as
the example i  a.length.

To achieve a seamless integration of abstract domains within JavaDL, we refrain
from the introduction of abstract elements as first-class members. Instead we use a
different approach to refer to the element of an abstract domain:

Definition 6.3 (ga,Z-symbols). Given a countable abstract domain A = {a1,a2, . . .}.
For each abstract element ai 2 A�{?} there

• are infinitely many constant symbols ga, j 2 FSym, j 2 N and gM
ai, j 2 g(ai),

• is a unary predicate cai where cM
ai

is the characteristic predicate of set g(ai).

The interpretation of a symbol gai, j is restricted to one of the concrete domain
elements represented by ai, but otherwise not fixed. In other words, the only guarantee
about (restriction on) the actual value of gai, j is to be an element of a(ai).

168 6 Abstract Interpretation

6.2.2 Abstractions for Integers

In this subsection, we introduce a simple abstract domain for integers, which we use
to illustrate our approach. This abstract domain is called Sign Domain and shown in
Figure 6.2. As its naming suggests, it abstracts from the actual integer values and

>

?

 �

0neg pos

g(>) = Z
g() = {i 2 Z | i  0}
g(�) = {i 2 Z | i � 0}

g(neg) = {i 2 Z | i < 0}
g(pos) = {i 2 Z | i > 0}

g(0) = {0}
g(?) = /0

Figure 6.2 Sign Domain: An abstract domain for integers

distinguishes them only w.r.t. their sign. The associated abstraction and concretization
function obviously form a Galois connection.

The abstract domain is integrated into JavaDL by adding ga,Z symbols and their
characteristic predicates ca for a 2 {neg,0,pos,,�,>}. The characteristic predi-
cates are defined as follows:

8int x;(c0(x)$ x .
= 0) 8int x;(c>(x)$ true)

8int x;(cneg(x)$ x < 0) 8int x;(cpos(x)$ x > 0)
8int x;(c(x)$ x  0) 8int x;(c�(x)$ x � 0)

6.2.3 Abstracting States

We now have all the parts together to explain how to abstract a given program state.
We go further and embed the approach in a general notion of weakening, which
provides us also with a natural soundness notion.

Given the following sequent:

c � 5 =) {i := c+1} [i++;]i > 0

The idea is to provide an abstraction rule that rewrites the above rule into:

c � 5 =) {i := gpos,1} [i++;]i > 0

6.3. Loop Invariant Generation 169

where we replaced the ‘more’ complicated expression c+1 on the right hand side
of the update to i by a simpler gamma symbol. The latter sequent preserves the
knowledge about the sign of i under which the box formula is evaluated (namely
that it is strictly greater than 0), but we lose all knowledge about i’s actual value.
More formally, if the latter sequent is valid then also the first one is valid. We call the
update i := gpos,1 weaker than i := c+1 as the first one allows more reachable states:
For the sequent to be true, the formula behind i := gpos,1 must be true in all Kripke
structures K , i.e., for any positive value of i as gpos,1 does not occur anywhere else
in the sequent. The original sequent only requires the formula behind the update to
be true for all values strictly greater than 5.

We can formalize the weakening notion by introducing the update weakening rule
from [Bubel et al., 2009]:

weakenUpdate
G ,U (x̄ .

= c̄) =)9ḡ.U 0(x̄ .
= c̄),D G =) U

0j,D
G =) U j,D

where x̄ denotes a sequence of all program variables occurring as left-hand sides
in U and c̄ are fresh Skolem constants used to store the values of the variables
x̄ under update U . The formula 9ḡ.j is a shortcut for 9ȳ.(cā(ȳ)^y[ḡ/ȳ]), where
ȳ = (y1, . . . ,ym) is a list of fresh first-order variables of the same length as ḡ , and
where y[ḡ/ȳ] stands for the formula obtained from y by replacing all occurrences of
a symbol in ḡ with its counterpart in ȳ. This rule allows us to abstract any part of the
state with a location-wise granularity.

Performing value-based abstraction becomes thus simply the replacement of an
update by a weaker update. In particular, we do not perform abstraction on the
program level, but on the symbolic state level. Thus abstraction needs to be defined
only on symbolic states (updates) and not on programs.

6.3 Loop Invariant Generation

In this section we describe how to use update weakening to automatically infer
loop invariants that allow us to verify unbounded loops without the need for a user
provided loop invariant. To describe the approach we restrict ourselves to simple
program variables of integer type. We discuss extensions for objects and in particular
arrays in a later section.

As indicated earlier we intend to perform abstraction on demand when reaching a
loop (or recursive method call), as those cases require user interaction in the form of
loop specification or method contracts. Our aim is to avoid this tedious work. We
solve this by two steps (i) an adapted loop invariant rule which allows one to integrate
value abstraction as part of the anonymizing update, and (ii) a method to compute
the abstracted state.

Assume a proof situation in which we encounter a loop. To reason about the loop’s
effect, we use the following rule:

170 6 Abstract Interpretation

invariantUpdate

G ,U (x̄ .
= c̄) =)9ḡ.U 0

mod(x̄
.
= c̄),D

G ,U 0
modg, U

0
mod [p](x̄

.
= c̄) =)9ḡ.U 0

mod(x̄
.
= c̄),D

G ,U 0
mod¬g =) U

0
mod [r]j,D

G =) U [while (g) {p}; r]j,D

With its three premisses and its basic structure, the invariantUpdate rule still
resembles the classical loop invariant rule. The role of the loop invariant is taken
over by the anonymizing update U

0
mod . The idea is to be smarter when anonymizing

locations that might possibly be changed by the loop. Instead of anonymizing these
locations by fresh Skolem constants, losing all information about their value and
retroactively adding some knowledge back using a loop invariant, we use fresh ga,Z
symbols. This way we keep some information about the value of these locations,
namely, that their value remains within the concretization g(a) of the abstract element
a. As we no longer have a traditional loop invariant, the lower bound of precision
loss for the anonymized locations is given by the granularity of our abstract domain.

The rule’s third premiss is the use case and represents the case where we have
just exited the loop. The reachable states after the loop are contained in the set of all
states reachable by update U

0
mod strengthened by the fact that only those states need

to be considered where the loop’s guard evaluates to false. For all those states we
have to show that after symbolic execution of the remaining program the property to
prove holds. The second premise ensures that U

0
mod is a sound approximation of all

states reachable by any loop iteration. The first premiss ensures that the entry state is
also contained in U

0
mod .

Example 6.4. Given the following sequent

i � 0 =) {n := 0} [while (i>0) {i--; n++;}](i .
= 0^n � 0)

To apply rule updateInvariant we need to provide U
0

mod . Intuitively, we see that the
loop modifies both variables i and n. About n we know that it is initially 0 and
afterwards only increased. In case of i we know that its initial value is nonnegative
and decreased by one with each loop iteration. Hence, we can conclude that both i
and n are always covered by abstraction �. This gives us the following anonymizing
update U

0
mod

i := g�,1 ||n := g�,2

The resulting proof goals after the rule application are: For the initial case

i � 0,{n := 0}(i .
= c1 ^n .

= c2) =)
9y1,y2.

�
c�(y1)^c�(y2)^{i := y1 ||n := y2}(i

.
= c1 ^n .

= c2)
�

which can easily be proven valid by choosing i for y1 and 0 for y2 as instantiations
of the existential formula on the right sequent side. The second branch proving that
the update describes all possible values of i and n after any loop iteration is

6.3. Loop Invariant Generation 171

i � 0,{i := g�,1 ||n := g�,2}(i > 0),
{i := g�,1 ||n := g�,2}[i--;n++;](i .

= c1 ^n .
= c2) =)

9y1,y2.
�
c�(y1)^c�(y2)^{i := y1 ||n := y2}(i

.
= c1 ^n .

= c2)
� .

This sequent can also be proven directly. After executing the loop body, applying the
updates and some simplifications the above sequent becomes

i � 0, g�,1 > 0, g�,1 �1 .
= c1, g�,2 +1 .

= c2 =)
9y1,y2.

�
c�(y1)^c�(y2)^{i := y1 ||n := y2}(i

.
= c1 ^n .

= c2)
�

by choosing g�,1 �1 for y1 and g�,2 +1 for y2 we can prove the sequent as c�(g�,2 +
1) is obviously true and the truth of c�(g�,1 �1) follows from the formula g�,1 > 0
which is part of the antecedent (obtained from the knowledge that the loop guard is
true).

Finally the last proof goal to be shown valid is

{i := g�,1 ||n := g�,2}(¬i > 0) =) {i := g�,1 ||n := g�,2}[](i
.
= 0^n � 0)

which, once we derive that i is 0 from the antecedent, is trivial.

The question remains how to find a good candidate for U
0

mod automatically. The
solution is to start a side proof which unwinds the loop; once the loop body has been
symbolically executed, we join the updates of all open branches by assigning each
changed location the smallest abstract domain element that encompasses all of its
potential values on the different branches. Repeat unwinding the loop until the update
created by the join does not change any longer. The such obtained update is a sound
candidate for U

0
mod .

Definition 6.5 (Joining Updates). The update join operation is defined as

ṫ : (2Fml ⇥Upd)⇥ (2Fml ⇥Upd)! (2Fml ⇥Upd)

and is defined by the property: Let U1 and U2 be arbitrary updates in a proof P and
let C1,C2 be formula sets representing constraints on the update values. Then for
(C,U) = (C1,U1) ṫ (C2,U2) the following holds for i 2 {1,2}:

1. U is (P, Ci)-weaker than Ui, and
2. Ci =) {Ui}

V
C

A concrete implementation tabs of ṫ for values can be computed as follows: For
each update x := v in U1 or U2 the generated update is x := v, if {U1}x .

= {U2}x.
Otherwise it is x := gai, j for some ai where cai({U1}x) and cai({U2}x).

Example 6.6. We illustrate the described algorithm along the previous example: The
sequent to prove was

i � 0 =) {n := 0} [while (i>0) {i--; n++;}](i .
= 0^n � 0)

instead of ‘guessing’ the correct update, we sketch now how to find it automatically:
Unrolling the loop once ends in two branches: one where the loop guard does not

172 6 Abstract Interpretation

hold and the loop is exited (which we can ignore) and the second one where the loop
body is executed. After finishing the symbolic execution of the loop body the sequent
is

i > 0 =) {i := i�1 ||n := 1} [while (i>0) {i--; n++;}](i .
= 0^n � 0) .

We now compare the two sequents and observe that i and n has changed. Finding the
minimal abstract element for n which covers both values 0 and 1 returns the abstract
element �. For i we know that the previous value was greater-or-equal than the 0,
after this iteration we know it has been decreased by one, but we also learned from
the loop guard that on this branch the initial value of i was actually strictly greater
than 0, hence, i�1 is at least 0 and thus the abstract element covering both values is
also �. We continue with the sequent

i > 0 =) {i := g�,1 ||n := g�,2} [while (i>0) {i--; n++;}](i .
= 0^n � 0)

where the update has been replaced by the ‘abstracted’ one. The result of unrolling
the loop once more results in the sequent

g�,1 > 0=) {i := g�,1�1 ||n := g�,2+1} [while (i>0) {...}](i .
= 0^n� 0) .

Joining this update with the previous one results in the update i := g�,4 ||n := g�,4
which is (except for the numbering) identical to the previous one. This means we
have reached a fixed point and we can use this update as the anonymizing update.

The approach of finding the update is sound, but we want to stress that this
is actually not essential as the invariantUpdate rule checks the soundness of the
provided updated.

6.4 Abstract Domains for Heaps

In KeY the program heap is modeled by the program variable heap of type Heap.
Therefore any changes to the program heap will be expressed as an update to the
program variable heap. Furthermore, the program rules, i.e., those calculus rules
for dealing with program fragments, can only ever modify heap by extension. By
this we mean that given an initial update heap := h the application of a program rule
can produce an update heap := h0 only if h is a subterm of h0 and h0 extends h only
with anon, create, and/or store operations. Heap simplification rules, however, may
reduce the heap term.

Our intentions for abstraction are to join multiple program states originating from
a single source program state, such as the program state before execution of a loop,
method call, if- or switch-statement. Therefore we can assume an initial value old
for the program heap at the originating program point and based on this create the
abstract domain as follows:

6.4. Abstract Domains for Heaps 173

We define LS ⇢ DLocSet to contain all object/field pairs not containing the created
field, i.e.:

LS = DObject ⇥ (DField \{createdM })

We define the family of abstract domains A
Heap

old = (AHeap
old ,vold,told) for all

initial well-formed heaps old as

AHeap
old = {?,>}[2LS

xtold y =

8
>>>>>><

>>>>>>:

x , if y =?
y , if x =?
> , if y =>
> , if x =>
x[y , otherwise

x vold y = (y = xtold y)

Abstraction and concretization functions are given as:

aold : 2DHeap ! AHeap
old

heaps 7!

8
>>><

>>>:

? , if heaps = /0
a , if 8h 2 heaps,o 2 DObject.

wellFormedM (h)^ (old(o,createdM)! h(o,createdM))

> , otherwise

where a = {(o, f) 2 DLS | 9h 2 heaps. h(o, f) 6= old(o, f)}

gold : AHeap
old ! 2DHeap

? 7! /0

> 7! DHeap

ls ✓ LS 7! {h | (8o 2 DObject. old(o,createdM)! h(o,createdM)) ^

(8(o, f) 2 DLS\ls. h(o, f) = old(o, f)}

As A
Heap

old contains infinite ascending chains due to both Object and Field being
infinite, we require either a weakening or a subset of AHeap

old for which no infinite
ascending chains exist. We could, for example, reduce the set of available location
sets from LS to the subset thereof for which no location set contains more than n
elements, for some n 2 N. Anytime a larger location set were required, we would
instead return >. This works, but has the distinct disadvantage that the following
infinite ascending chain hxii will wind up overapproximating not only for the cause
of the infinite ascension (the field f), but also for all other fields as well:

174 6 Abstract Interpretation

x0 = /0 (6.1)
xi+1 = xi [{(oi, f)} (6.2)

In order to keep the overapproximation as localized as possible, we consider the
following points:

• Field can be separated into array indices Arr = {arrM (x) | x 2N} and non array
indices Field \Arr.

• For any Java program there is a finite subset fs ⇢ (Field \Arr) in a closed world
determinable a priori which contains all non array index fields modifiable by the
program.

We therefore introduce the family of abstract domains A
Heap

old,fs,n,m,k for all finite
sets fs ⇢ (Field \Arr) and integers n,m,k 2 N, which contain no infinite ascending
chains:

A
Heap

old,fs,n,m,k = (AHeap
old,fs,n,m,k,vold,fs,n,m,k,told,fs,n,m,k)

AHeap
old,fs,n,m,k = {?,>}[{Wfs,n,m,k(ls) | ls ✓ LS}

xtold,fs,n,m,k y =

8
>>><

>>>:

> , if x => or y =>
x , if y =?
y , if x =?
Wfs,n,m,k(x[y) , otherwise

x vold,fs,n,m,k y = (y = xtold,fs,n,m,k y)

where Wfs,n,m,k : 2LS ! 2LS is defined as:

ls 7!
(

LS , if 9(o0, f 0) 2 ls. f 0 62 (fs[Arr)
ls[W N

fs,n(ls)[W M
m (ls)[W K

k (ls) , otherwise

with W N
fs,n,W

M
m ,W K

k defined as:

W N
fs,n(ls) = {(o, f) | f 2 fs^ |{o0 | (o0, f) 2 ls}|> n}

W M
m (ls) = {(o, f) | f 2 Arr^ |{ f 0 2 Arr | (o, f 0) 2 ls}|> m}

W K
k (ls) =

(
DObject ⇥Arr , if |{o | 9 f 2 Arr. (o, f) 2 ls}|> k
/0 , otherwise

The function Wfs,n,m,k is the identity on any location set which:

• contains only pairs (o, f) where f is in fs or is an array index,
• contains no more than n pairs (o, f) for any fixed f 2 fs,
• contains no more than m pairs (o,arrM (x)) for any fixed o 2 DObject, and
• contains pairs (o,arrM (x)) for no more than k different objects o 2 DObject.

6.4. Abstract Domains for Heaps 175

?

/0

DObject ⇥Arr
{(o1, f)} {(o2, f)} . . .

DObject ⇥{ f}
(DObject ⇥Arr)[{(o1, f)} (DObject ⇥Arr)[{(o2, f)} . . .

DObject ⇥ (Arr[{ f})

LS

>

Figure 6.3 Abstract Domain A
Heap

heap,{ f},1,0,0

?

/0

{(o1,arr(0))} {(o1,arr(1))} {(o2,arr(0))} {(o1,arr(2))} {(o2,arr(1))} . . .

{o1}⇥Arr {o2}⇥Arr . . .

DObject ⇥Arr

LS

>

Figure 6.4 Abstract Domain A
Heap

heap, /0,0,1,1

176 6 Abstract Interpretation

For location sets outside of this scope, Wfs,n,m,k extends the set by completion of
those pairs which violate the above rules, i.e.:

• Full extension to LS for any location set containing a field not in fs or Arr.
• Inclusion of all pairs (o, f) for each f 2 fs which had more than n occurrences.
• Inclusion of all pairs (o,arrM (x)) for each o 2 DObject which had more than m

index references.
• Inclusion of all pairs (o,arrM (x)) for all objects and indices if there were more

than k different objects containing index references.

The above treatment limits overapproximation, while still ensuring that no infinite
ascending chains are possible.

Example 6.7 (Two Small Heap Abstractions). To demonstrate these finite height
abstract domains for heaps, we look at the two heap abstractions A

Heap
heap,{ f},1,0,0 and

A
Heap

heap, /0,0,1,1 in Figure 6.3 and Figure 6.4. Here the nodes marked as “. . .” represent
an infinite number of nodes, full lines from or to such infinite nodes represent edges
from or to each actual node, while dotted lines from such nodes represent edges from
an infinite subset of these nodes to the corresponding connecting node. In general,
of course, there will be many more available fields in fs, as well as n,m and k being
greater than 1.

6.5 Abstract Domains for Objects

In addition to an abstraction for the heap variable, there also exist local variables for
objects which must be abstracted as well, therefore we require an abstract domain
for DObject. Most of the information about an object is actually only representable if
the heap on which the object resides is also known. From an abstract domain point
of view this would require a relational abstract domain linking objects and heaps.
As our approach does not use relational abstract domains (at least not directly), our
abstract domain for objects can only express the knowledge directly obtainable from
only the object itself. The following attributes of an object can be obtained without
knowledge of the heap:

• Reference equality of this object with any other object, in particular null.
• The length of this object (used only by arrays).
• The type of this object.

We therefore first introduce abstract domains for objects based on each of these
points separately and can then combine them into one abstract domain for ob-
jects A

Object.

6.5. Abstract Domains for Objects 177

6.5.1 Null/Not-null Abstract Domain

The abstract domain A
Object

null
for objects based on reference equality to null is quite

simple and at the same time incredibly useful, in that it can be used to check for
possible NullPointerExceptions or prove the lack thereof in a piece of Java code.

A
Object

null
is shown in Figure 6.5 with abstraction and concretization functions.

?

null not-null

>
a

A
Object

null

(X) =

8
>>><

>>>:

? , if X = /0
null , if X = {nullM }
not-null , if nullM 62 X
> , otherwise

g
A

Object
null

(x) =

8
>>><

>>>:

/0 , if x =?
{null} , if x = null
DObject \{null} , if x = not-null
DObject , if x =>

Figure 6.5 Abstract Domain A
Ob ject

null

6.5.2 Length Abstract Domain

An abstract domain for objects based on their length is useful only for arrays. For all
other object types the length is some arbitrary number which has no meaning. For
arrays, however, abstracting these to their length can be quite helpful, for example
one could conclude based on this abstraction whether a loop iterating over an array
should be unrolled completely or a loop invariant generated for it.

We require an abstract domain A
Z for the concrete domain Z and map each

object’s length to said abstract domain. We can then define the abstract domain for
objects based on their length as A

Object
length

:= A
Z with abstraction and concretization

functions as follows:

a
A

Object
length

(X) = a
A Z({lengthM (x) | x 2 X})

g
A

Object
length

(x) = {o 2 DObject | lengthM (o) 2 g
A Z(x)}

We can use any abstract domain for Z, for example the simple sign domain
in Figure 6.2. However, using this abstract domain would not be very clever as
the abstract elements neg and  will never abstract valid array lengths, while the
abstraction of both 1 and 10000 to the same abstract element pos is not very helpful.
Instead, let us consider the following:

178 6 Abstract Interpretation

?

0 1 2 3 4 5 6 7 8 9 10 > 10

0..1 2..3 4..5 6..10

0..3

0..5

0..10

� 0

>

Figure 6.6 An Abstract Domain A
Ob ject

length

1. Iterating over an array of length 0 is trivial (do not enter loop) and therefore full
precision should be kept, rather than abstracting by applying a loop invariant.

2. Iterating over an array of length 1 is similarly trivial (execute the loop body
once) and therefore full precision should also be kept here by unrolling the loop,
rather than applying a loop invariant. The loop invariant rule must still prove that
the loop body preserves the invariant, thus execution of the loop body is always
required once, even when applying a loop invariant.

3. Iterating over an array of length 2 or 3 can usually be done reasonably quickly
by unrolling the loop a sufficient number of times, therefore unrolling should be
favored over applying a loop invariant except in cases where symbolic execution
of the loop body is extremely costly.

4. Iterating over an array of length 4 or 5 can often be done reasonably quickly
by loop unrolling, therefore applying a loop invariant should only be done for
somewhat complex loop bodies.

5. Iterating over an array of length 6 to 10, applying a loop invariant should be
favored, except in cases where the loop body is trivial.

6. Iterating over an array of length greater than 10 should almost always be solved
by applying a loop invariant.

The above are reasonable guidelines (or in the case of lengths 0 and 1 simple fact),
such that we can present the abstract domain in Figure 6.6 for the concrete domain Z
and therefore also for objects based on their length.

6.5. Abstract Domains for Objects 179

6.5.2.1 Type Abstract Domain

Abstracting on object type requires knowledge of the type hierarchy. However, due
to logical consequence of a formula requiring that the formula hold in all extensions
of the type hierarchy, we must in essence create an abstract domain based on not just
the type hierarchy given directly by the program, but any extension thereof.

For a set of objects X we offer abstractions for their types based on which exact
types are present in X , i.e., a set of types such that each element in X is an exact
instance of one of those types.

For any given type hierarchy T we must create an abstract domain, such that
there exist abstraction and concretization functions for all type hierarchies T

0 which
extend T .

For a given type hierarchy T = (T Sym,v) we first define the set of all dynamic
object types Od = {d 2 T Sym | d v Object and d is not marked abstract} and based
on this define the abstract domain A

Object
Od

, as shown in Figure 6.7. Then for any
type hierarchy extension T

0 = (T Sym0,v0) of T the abstraction and concretization
functions are given in Figure 6.8.

A
Object

Od
= (AObject

Od
,vObject

Od
,tObject

Od
)

AObject
Od

= {>}[(2Od \Od)

X tObject
Od

Y =

(
> , if X => or Y => or X [Y = Od

X [Y , otherwise

X vObject
T

Y =

8
><

>:

tt , if Y =>
ff , if X => and Y 6=>
X ✓ Y , otherwise

Figure 6.7 Family of Abstract Domains A
Object

Od

aObject
Od ,T 0 (X) =

8
><

>:

> , if 9x 2 X . d 0(x) 62 Od

or {d 2 Td | 9x 2 X . d 0(x) = d}= Od

{d 2 Td | 9x 2 X . d 0(x) = d} , otherwise

gObject
Od ,T 0 (X) =

(
{o 2 D0 | d 0(o)v0 Object} , if X =>
{o 2 D0 |

W
d2X d 0(o) = d} , otherwise

Figure 6.8 Galois connection between A
Object

Od
and the Concrete Object Domain from T

0

180 6 Abstract Interpretation

Example 6.8. We can consider a simplified Java program containing only the types
declared in Listing 6.1. Based on this we have the set of concrete object types

class Object {...}
abstract class A {...}
interface I {...}
class B extends A implements I {...}

Listing 6.1 Type declarations

{Object,B,Null} and the abstract domain A
Object
{Object,B,Null} as shown in Figure 6.9.

/0

{Object} {B} {Null}

{Object,B} {Object,Null} {B,Null}

>

Figure 6.9 Abstract Domain A
Object
{Object,B,Null}

The abstract domains A
Object

Od
can be used, for example, to:

• prove that casting of an object does not cause a ClassCastException to be
thrown,

• prove that no ArrayStoreException is thrown when inserting an object into
an array,

• prove that an instanceof check will be successful,
• prove that an instanceof check will be unsuccessful, and/or
• narrow the list of possible method body instantiations down which is created

when unfolding a method call.

It is important to point out that although A
Object

Od
always has abstract elements

{Null} and Od \{Null}, it is not inherently stronger than the abstract domain A
Object

null
.

This is because given a type hierarchy extension T
0 which introduces a new dy-

namic type d0 @ Object, for which it holds for some o that d 0(o) = d0 the following
abstractions exist:

aObject
Od ,T 0({o}) =>

aObject
null

({o}) = not-null

6.5. Abstract Domains for Objects 181

6.5.2.2 Combining the Object Abstract Domains Into One

Of course, we would like just one abstract domain for objects encompassing all of
the abstractions discussed in the previous subsections. The abstract domain A

Object

for a given type hierarchy T is a partial cartesian product of the abstract domains
A

Object
null

, A
Object

length
and A

Object
Od

such that the abstraction and concretization functions
for any type hierarchy extension T

0 can be given as in Figure 6.10. The reason why
only a subset of the cartesian product is required is due to the following: As it must
hold that a(g(a)) = a for all abstract elements a, there can never be more than one
abstract element representing the same set. We therefore cannot have both (?,y,z)
and (x,?,z) as separate abstract elements, as intuitively both of these would have to
represent the empty set. Additionally, while the abstraction for length is orthogonal
to the abstractions for null and exact type (due to the function length being defined
for all objects, including null and nonarray types), the abstractions for null and
exact type are not. While it is true that in one abstraction we may know that null
does not appear, while in the other abstraction we do not, it is nonetheless impossible
for certain abstract elements to be combined without representing the empty set, for
example the abstract elements null and {Object}.

The abstract domain A
Object is defined in Figure 6.11.

aObject(X) = (aObject
null

(X),aObject
length

(X),aObject
Od ,T 0 (X))

gObject((a,b,c)) = gObject
null

(a)\ gObject
length

(b)\ gObject
Od ,T 0 (c)

Figure 6.10 Abstraction and concretization Functions between A
Object and concrete objects in T

0

A
Object = (AObject,vObject,tObject)

AObject ⇢ AObject
null

⇥AObject
length

⇥AObject
Od

(a,b,c)vObject (x,y,z) = a vObject
null

x^b vObject
length

y^ c vObject
Od

z

(a,b,c)tObject (x,y,z) = (atObject
null

x,btObject
length

y,ctObject
Od

z)

Figure 6.11 Abstract Domain A
Object

182 6 Abstract Interpretation

6.6 Extensions

In this section we briefly sketch how to add additional precision for arrays while
staying fully automatic. For sake of presentation we use a simplified abstract domain
for arrays (but which is included in the abstraction given in Section 6.4) and define a
more specific notion to join heap values. Based on this we can then sketch how to
automatically generate loop invariants for arrays that maintain a reasonable level of
precision for many use cases. This section is basically a shortened version of [Hähnle
et al., 2016] to which we refer the reader for details.

6.6.1 Abstractions for Arrays

We extend the abstract domain of the array elements to a range within the array.
Given a set of indexes R, an abstract domain A for array elements can be extended to
an abstract domain AR for arrays by copying the structure of A and renaming each ai
to aR,i. The aR,i are such that gaR,i, j 2 {arrOb j 2 int[] | 8k 2 R.cai(arrOb j[k])}.

Example 6.9. As abstract domain A we use the sign domain for integers, producing
for each R ✓ N an abstract domain AR:

>R

/0R

R �R

0RnegR posR

g(>R) = int[]
g(R) = {arrOb j 2 int[] | 8k 2 R.arrOb j[k] 0}
g(�R) = {arrOb j 2 int[] | 8k 2 R.arrOb j[k]� 0}

g(negR) = {arrOb j 2 int[] | 8k 2 R.arrOb j[k]< 0}
g(posR) = {arrOb j 2 int[] | 8k 2 R.arrOb j[k]> 0}

g(0R) = {arrOb j 2 int[] | 8k 2 R.arrOb j[k] .= 0}
g(/0R) = {}

With R= {0,2}, we get g(�{0,2})= {arrOb j 2 int[] | arrOb j[0]� 0^arrOb j[2]�
0}. Importantly, the array length itself is irrelevant, provided arrOb j[0] and arrOb j[2]
have the required values. Therefore the arrays (we deviate from Java’s array literal
syntax for clarity) [0,3,6,9] and [5,�5,0] are both elements of g(�{0,2}).

Of particular interest are the ranges containing all elements modified within a
loop. One such range is [0..arrOb j.length). This range can always be taken as a
fallback option if no more precise range can be found.

6.6.2 Loop Invariant Rule with Value and Array Abstraction

To be able to deal with arrays we extend the updateInvariant rule:

6.6. Extensions 183

invariantUpdate

G ,U (x̄ .
= c̄) =)9ḡ.{U 0}(x̄ .

= c̄),D
G ,old .

= U heap =) U Inv,D
G ,old .

= U heap, U
0

mod(g^ Inv), U
0

mod [p](x̄
.
= c̄) =)
9 ḡ;U 0

mod(x̄
.
= c̄),D

G ,old .
= U heap, U

0
mod(g^ Inv) =) U

0
mod [p]Inv,D

G ,old .
= U heap, U

0
mod(¬g^ Inv) =) U

0
mod [r]j,D

G =) U [while (g) {p}; r]j,D

where U
0

mod := (U 0 k V
heap

mod) with U
0 being the U

0
mod from the previous sections and

V
heap

mod denotes the abstraction of the heap stored in program variable heap. The x̄, c̄, ḡ
and 9 ḡ;j are defined as previously. In addition to heap abstraction, we reintroduce
the loop invariant formula Inv, which is subsequently used to express properties
about the content of the heap. This includes explicit heap invariants of the form
8i 2 S. C ! P(selectint(heap,arrObj,arr(i))) as well as invariants which further
specify S or C. The program variable and old is a fresh constant used in Inv to refer
to the heap before loop execution.

i = 0; j = 0;
while(i < a.length) {

if (a[j] > 0) j++;
b[i] = j;
c[2*i] = 0;
i++;

}

Listing 6.2 Example program for array abstraction

Most branches serve a similar approach as those in the previous version. The
second and the third branch are new ensuring that the loop invariant formula is
initially valid as well as preserved by the loop body. Given program p in Listing 6.2,
applying the assignment rule to G =) U [p]j,D leads to G =) {U k i := 0 k j :=
0}[while...]j,D . Now the invariantUpdate rule is applied with, e.g., the fol-
lowing values:

184 6 Abstract Interpretation

U
0 = (U k i := g�,1 k j := g�,2)

V
heap

mod =

heap := anon(anon(heap,b[0..i],anonHeap1),c[0..c.length],anonHeap2)

Inv =
�
8k 2 [0..j); c>(selectint(heap,a,arr(k)))

�

^
�
8k 2 [0..i); c�(selectint(heap,b,k))

�

^ (8m 2 [0..c.length);
(m < 2⇤ i^m%2 .

= 0)! c0(selectint(heap,c,arr(2⇤m))))

^
�
8m 2 [0..c.length);¬(m < 2⇤ i^m%2 .

= 0)

! (selectint(heap,c,arr(m))
.
= selectint(old,c,arr(m)))

�

The update U
0

mod is equal to the original update U except for the values of i and j
which can both be any nonnegative number. The arrays b and c have (partial) ranges
anonymized. We use arrOb j[lower..upper] to express the set of locations consisting
of all array elements of array arrOb j from lower (included) to upper (excluded).

Array a is not changed by the loop and thus not anonymized. The invariants in
Inv express that

1. a contains positive values at all positions prior to the current value of j,
2. the anonymized values in b (cf. V

heap
mod) are all nonnegative, and

3. the anonymized values in c are equal to their original values (if the loop does
not or has not yet modified them) or are equal to 0.

6.6.3 Computation of the Abstract Update and Invariants

We generate U
0, V

heap
mod and Inv automatically in a side proof, by symbolic execution

of single loop iterations until a fixed-point is found. The computation of U
0 is as

in Section 6.3, but ignores the heap variable heap. We generate V
heap

mod and Inv by
examining each array modification1 and anonymizing the entire range within the
array (expressed in V

heap
mod) while adding a partial invariant to the set Inv. Once a

fixed-point for U
0 is reached, we can refine V

heap
mod and Inv by performing in essence

a second fixed-point iteration, this time anonymizing possibly smaller ranges and
potentially adding more invariants.

To perform this we need to generalize our notion of joining updates to include
heaps.

Definition 6.10 (Joining Heaps). Any operator with the signature

t̂ : (2Fml ⇥DLTrmHeap)⇥ (2Fml ⇥DLTrmHeap)! (2Fml ⇥DLTrmHeap)

1 Later we also examine each array access (read or write) in if-conditions to gain invariants such as
8k 2 [0..j). c>(select(heap,a,arr(k))) in the example above.

6.6. Extensions 185

is a heap join operator if it satisfies the properties: Let h1, h2 be arbitrary heaps
in a proof P, C1,C2 be formula sets representing constraints on the heaps (and
possibly also on other update values) and let U be an arbitrary update. Then for
(C,h) = (C1,h1) t̂ (C2,h2) the following holds for i 2 {1,2}:

1. (U k heap := h) is (P, Ci)-weaker than (U k heap := hi),
2. Ci =) {U k heap := hi}

V
C, and

3. t̂ is associative and commutative up to first-order reasoning.

We define the set of normal form heaps HeapNF ⇢ DLTrmheap to be those heap terms
that extend heap with an arbitrary number of preceding stores or anonymizations.
For a heap term h 2 HeapNF we define

writes(h) :=

8
><

>:

/0 if h = heap
{h}[writes(h0) if h = store(h0,a,arr(idx),v) or

h = anon(h0,a[l..r],h00)

A concrete implementation t̂heap of t̂ is given as follows: We reduce the signature to
t̂heap : (2Fml ⇥HeapNF)⇥ (2Fml ⇥HeapNF)! (2Fml ⇥HeapNF). This ensures that
all heaps we examine are based on heap and is a valid assumption when taking the
program rules into account, as these maintain this normal form. As both heaps are in
normal form, they must share a common subheap (at least heap). The largest common
subheap of h1,h2 is defined as lcs(h1,h2) and all writes performed on this subheap can
be given as writeslcs(h1,h2) := writes(h1)[writes(h2) \ (writes(h1)\writes(h2)).
For the interested reader, the actual algorithms to compute the update abstractions
are shown in [Hähnle et al., 2016].

6.6.4 Symbolic Pivots

Finally, we sketch briefly how to generate the loop invariant formula Inv capturing
knowledge about the modified content of an array. In the previous section we com-
puted the update Umod , which provides us the abstraction for primitive types as well
as the heap, in particular, arrays. For the latter this information is relatively weak as
it assumes any update to an array element could cause a change at any array index.
With the generated U

0, however, we can now refine V
heap

mod and Inv. We try to keep
the anonymizations in V

heap
mod to a minimum, while producing stronger invariants Inv.

Consider the starting sequent

G =) U [while (g) {p}; r]j,D .

As U
0 is weaker than U , the update (U 0 k heap := U heap) remains weaker than

U . For the sequent

G =) {U 0 k heap := U heap}[while (g) {p}; r]j,D

186 6 Abstract Interpretation

while computing the heap join (by unrolling the loop) we reach open branches

Gi =) {Ui}[while (g) {p}; r]j,Di .

Aside from the values for heap, U
0 is weaker than Ui, as U

0 is a fixed-point. We
therefore do not have to join any nonheap variables when computing (U ⇤, Inv).

When joining constraint/heap pairs we distinguish between three types of fm,n:

1. anonymizations, which are kept, as well as any invariants generated for them
occurring in the constraints,

2. stores to concrete indexes, for which we create a store to the index either of the
explicit value (if equal in both heaps) or of a fresh gi, j of appropriate type, and

3. stores to variable indexes, for which we anonymize a (partial) range in the array
and give stronger invariants.

Given a store to a variable index store(h,a,arr(idx),v), the index idx is express-
ible as a function index(gi0, j0 , . . . ,gin, jn). These gix, jx can be linked to program vari-
ables in the update U

0, which contains updates pvx := gix, jx .We can therefore express
idx as the function sp(. . .pvx . . .).

We call idx = sp(. . .pvx . . .) a symbolic pivot, as it expresses what elements of the
array can be changed based on which program variables and allows us to partition the
array similar to pivot elements in array algorithms. Symbolic pivots split the array
into an already modified partition and an unmodified partition, where (parts of) the
unmodified partition may yet be modified in later iterations of the loop.

If P(W) = 8k 2 [U sp..W sp). W ca j(selectint(heap,arrObj,arr(k)), for a sym-
bolic pivot sp, P(U) is trivially true, as we are quantifying over an empty set.
Likewise, it is easy to show that the instance Q(U) of the following is valid:

Q(W) =
8k 62 [U sp..W sp);

selectint(W heap,W arrObj,arr(k)) .
=

selectint(U heap,W arrObj,arr(k))

Therefore, anonymizing an array arrObj with

anon(h,arrObj[0..arrObj.length],anonHeap)

and adding invariants P(U ⇤) and Q(U ⇤) for the contiguous range [U sp..{U ⇤}sp)
is inductively sound, if P(U 0) =) P(Ui) and Q(U 0) =) Q(Ui).

Definition 6.11 (Iteration affine). Given a sequent G =) U [p]j,D where p starts
with while, a term t is iteration affine, if there exists some step 2 Z such that
for any n 2 N, if we unroll and symbolically execute the loop n times, for each
branch with sequent Gi =) Ui[p]j,Di it holds that there is some value v, such that
Gi[!Di =) Uit

.
= v and G[!D =) U t +n⇤ step .

= v.

If the symbolic pivot is iteration affine, we know the exact elements that may be
modified. We could anonymize only this range. However, as expressing the affine

6.7. Conclusions 187

range as a location set is nontrivial, we anonymize the entire array and create the
following invariants for the modified and unmodified partitions (using the symbols
of Definition 6.11):

8k 2 [0..arrObj.length). (k � U sp^ k < sp^ (k�U sp)%step .
= 0)! P(k),

and 8k 2 [0..arrObj.length). ¬(k � U sp^ k < sp^ (k�U sp)%step .
= 0)

! selectint(heap,arrObj,arr(k)) .
= selectint(U heap,arrObj,arr(k))

Finally, we can also add invariants (without anonymizations) for array ac-
cesses which influence control flow. For each open branch with a condition
C(selectint(h,arrObj,arr(idx))) not already present in the sequent leading to it, we
determine the symbolic pivot for idx and create an iteration affine or contiguous
invariant for it.

6.7 Conclusions

In this section we outlined how to integrate abstraction into JavaDL. We looked first
into cases without a heap to explain the basic idea. We sketched then our approach to
extend the approach to arrays. We explained the necessary extensions to maintain a
reasonable amount of precision when abstracting arrays. The presented approach has
also been used to cover method contracts and recursion [Wasser, 2015]. It has been
applied in an eVoting case study [Do et al., 2016] to achieve full automation for the
purpose of detecting information leaks.

