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Debugging and Visualization

Martin Hentschel, Reiner Hähnle, and Richard Bubel

11.1 Introduction

Out of the four papers ([Burstall, 1974, Boyer et al., 1975, Katz and Manna, 1975,
King, 1976]) that independently introduced symbolic execution as a program analysis
technique during the mid 1970s, no less than three mention debugging as a motivation.
Indeed, symbolic execution has a number of natural properties that make it attractive
in helping to debug programs:

• A time-consuming task for users of classical interactive debuggers is to set up a
(small) initial program state which leads to an execution that exhibits the failure.
It is usually nontrivial to build the required, complex data structures. Symbolic
program execution, on the other hand, permits to execute any method or any
statement directly without setting up an initial state. This is possible by using
symbolic values instead of concrete ones. The capability to start debugging from
any code location makes it also easy to debug incomplete programs.

• Not only is it time-consuming to build concrete initial states, it is often also
difficult to determine under which exact conditions a failure will occur. This can
be addressed by symbolic execution, which allows one to specify initial states
only partially (or not at all) and which generates all reachable symbolic states up
to a chosen depth.

• Classical debuggers typically pass through a vast number of program states
with possibly large data structures before interactive debugging mode is en-
tered. Once this happens, it is often necessary to visit previous states, which
requires to implement reverse (or omniscient) debugging, which is nontrivial to
do efficiently, see [Pothier et al., 2007]. In a symbolic execution environment
reverse debugging causes only little overhead, because (a) symbolic execution
can be started immediately in the code area where the defect is suspected and
(b) symbolic states are small and contain only program variables encountered
during symbolic execution.

• The code instrumentation typically required by standard debuggers can make it
impossible to observe a failure that shows up in the unaltered program (so-called
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“Heisenbugs,” see [Gray, 1985]). This can be avoided by symbolic execution of
the unchanged code.

The question is then why—given these advantages of symbolic execution, plus
the fact that the idea to combine it with debugging has been around for 40 years—all
widely used debuggers are still based on interpretation of programs with concrete
start states. Stable Mainstream debugging tools evolved slowly and their feature
set remained more or less stable in the last decades, providing mainly the standard
functionality for step-wise execution, inspection of the current program state, and
suspension of the execution before a marked statement is executed. This is all the
more puzzling, since debugging is a central, unavoidable, and time-consuming task
in software development with an accordingly huge saving potential.

The probable answer is that, until relatively recently, standard hardware simply
was insufficient to realize a debugger based on symbolic execution for real-world
programming languages. On a closer look, there are three aspects to this. First, sym-
bolic execution itself: reasonably efficient symbolic execution engines for interesting
fragments of real-world programming languages are available only since ca. 2006
(for example, [Beckert et al., 2007, Grieskamp et al., 2006, Jacobs and Piessens,
2008]). Second, and this is less obvious, to make good use of the advantages of
symbolic execution pointed out above, it is essential to visualize symbolic execution
paths and symbolic states and navigate through them. Otherwise, the sheer amount
and the symbolic character of the generated information make it impossible to under-
stand what is happening. Again, high-quality visual rendering and layout of complex
information was not possible on standard hardware in real-time until a few years ago.
The third obstacle to adoption of symbolic execution as a debugging technology is
lack of integration. Developers expect that a debugger is smoothly integrated into
the development environment of their choice, so that debugging, editing, testing, and
documenting activities can be part of a single workflow without breaking the tool
chain.

These issues were for the first time addressed in a prototypic symbolic state
debugger by Hähnle et al. [2010]. However, that tool was not very stable and its
architecture was tightly integrated into the KeY system. As a consequence, the
Symbolic Execution Debugger (SED) [Hentschel et al., 2014a] presented in this
chapter was completely rewritten, much extended and realized as a reusable Eclipse
extension.

The SED extends the Eclipse debug platform by symbolic execution and visual-
ization capabilities. Although different symbolic execution engines can be integrated
into the SED platform, we will consider in the following only the integration of
KeY as symbolic execution engine. In contrast to the KeY verifier, the SED can be
used without any specialist knowledge, exactly like a standard debugger. To make
full usage of its capabilities, however, it is of advantage to know the basic concepts
of symbolic execution. To make the chapter self-contained we give a short intro-
duction into symbolic execution and to our notion of a symbolic execution tree in
Section 11.2. The debugging and visualization capabilities of SED are explained in
tutorial style in Section 11.3. We show how to employ the SED profitably in various
use cases, including tracking the origin of failures, help in program understanding,
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and even actual program verification. We also explain its architecture, which has a
highly modular design and allows other symbolic execution engines than KeY to be
integrated into SED. How KeY is employed in the SED, and which technical features
are necessary, is the topic of the final Section 11.4.

The reader who only wants to know how the SED is used and is not interested in
its realization can safely skip Section 11.3.7 and Section 11.4.

11.2 Symbolic Execution

In this section we explain symbolic execution and our notion of a symbolic execution
tree by way of examples.

Listing 11.1 shows Java method min, which computes the minimum of two given
integers. When the method is called during a concrete execution, the variables x and
y have defined values. The if statement can compare these values and decide to
execute either the then or the else block. Concrete execution always follows exactly
one path trough a (sequential) program. To explore different paths it is required to
execute the program multiple times with different input values.

1 public static int min(int x, int y) {
2 if (x < y) {
3 return x;
4 }
5 else {
6 return y;
7 }
8 }

Listing 11.1 Minimum of two integers

Symbolic execution uses symbolic in lieu of concrete values, so that when method
min is called, variables x and y are assigned symbolic values x and y. As long as
nothing is known about the relation of x and y, the if statement cannot decide
whether to follow the then or the else branch. Consequently, symbolic execution has
to split to follow both branches, resulting in a symbolic execution tree. One branch
continues the execution in case that the branch condition x < y is fulfilled and the
other in case that !(x < y) holds instead. The conjunction over all parent branch
conditions is named path condition and defines a constraint on the input values that
ensures this path to be taken. The knowledge gained from branch conditions is used
in subsequent symbolic execution steps to prune infeasible execution paths. If method
min is called a second time with the same symbolic values x and y and with one of
the possible branch conditions from the first call, then symbolic execution will not
split again. In this way symbolic execution discovers all feasible execution paths and
each symbolic path may represent infinitely many concrete executions.
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The complete symbolic execution tree of method min is shown in Figure 11.1.
The root of each symbolic execution tree in our notion of symbolic execution is a
start node, usually followed by a call of the method to execute.

<end> <end>

<return x as result of Numbers.min(x,y)> <return y as result of Numbers.min(x,y)>

return x; return y;

if (x<y)

y >  x y <= x

<call Numbers.min(x,y)>

<start>

Figure 11.1 Symbolic execution tree of static method min defined in class Numbers

Typically, an if statement splits execution. For this reason it is represented as a
branch statement. Its child nodes are branch conditions representing the condition
when a branch is taken. Branch conditions occur after branch statements if and only
if execution splits. If a branch statement does not split, then its child is the next state-
ment to execute. But also other statements than explicit branch statements can split
execution, for instance, an object access that may throw a NullPointerException.
Whenever a statement splits execution, its children show the relevant branch condi-
tions and continue execution.

In the example, on each branch a return statement is executed which causes
a method return and lets the program terminate normally (without an uncaught
exception).

Loop statements are unwound by default, similar to a concrete program execution.
The first time when a loop is entered it is represented as a loop statement in the
symbolic execution tree. Whenever the loop guard is executed, it will be represented
as a loop condition node and may split execution into two branches. One where
the guard is false and the execution is continued after the loop and one where it is
true and the loop body is executed once and the loop guard is checked again. As a
consequence, unwinding a loop can result in symbolic execution trees of unbounded
depth. As an illustration we use the method in Listing 11.2 which computes sum of
array elements.

The beginning of a symbolic execution tree resulting from execution of sum with
precondition array != null is shown in Figure 11.2. The left branch stops before
the loop guard is evaluated the second time, whereas the right branch terminates after
the computed sum is returned. When symbolic execution is continued on the left
branch, similar child branches will be created until Integer.MAX_VALUE is reached.

To render symbolic execution trees finite in presence of loops, optionally, a loop
invariant can be supplied [Hentschel et al., 2014b]. In this case a loop invariant node
is shown in the symbolic execution tree splitting execution into two branches. The
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1 public static int sum(int[] array) {
2 int sum = 0;
3 for (int i = 0; i < array.length; i++) {
4 sum += array[i];
5 }
6 return sum;
7 }

Listing 11.2 Sum of all array elements

i<array.length <end>

i++; <return 0 as result of Numbers.sum(array)>

sum_1+=array[i]; return sum_1;

i<array.length

array.length >  0 array.length < 1

int i = 0;

for ( int i = 0; i<array.length; i++ )

int sum = 0;

<call Numbers.sum(array)>

<start>

Figure 11.2 Symbolic execution tree of static method sum defined in class Numbers

first body preserves invariant branch represents all possible loop iterations ending
in loop body termination nodes.1 The second use case branch continues execution
after the loop. It is possible that the invariant was initially not valid or that it is not
preserved by the loop body. This would be a problem in a verification scenario, but a
violated loop invariant should not stop one from debugging a program. Therefore,
different icons indicate whether the loop invariant holds initially and in a loop body
termination node.

The sum example in Listing 11.2 is extended by a weak (and wrong) loop invariant
in Listing 11.3. A correct loop invariant would treat the case that i can be zero. For
verification it is also required to specify how the value of sum is changed by the loop.

The resulting symbolic execution tree using the loop invariant and precondition
array != null is shown in Figure 11.3. The icon of the loop invariant indicates
that it is initially not fulfilled.

Method calls are handled by default by inlining the body of the called method. In
case of inheritance, symbolic execution splits to cover all possible implementations
indicated by branch condition nodes in front of the method call node.

1 In case an exception is thrown or a jump outside of the loop is initiated by a return, break or
continue statement, execution is continued directly in the body preserves invariant branch.
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1 /*@ loop_invariant i > 0 && i <= array.length;
2 @ decreasing array.length - i;
3 @ assignable \strictly_nothing;
4 @*/
5 for (int i = 0; i < array.length; i++) { /* ... */ }

Listing 11.3 Wrong and weak loop invariant of loop from Listing 11.2

<start>

<call Sum.sum(array)>

int sum = 0;

for ( int i = 0; i<array.length; i++ )

int i = 0;

Body Preserves Invariant: array.length < 0 | i_0 >= 1 & array.length >  i_0

i<array.length

sum_1+=array[i];

i++;

<loop body end>

Use Case: array.length < 0 | i_0 >= 1 & array.length = i_0

return sum_1;

<return sum_1_0 as result of sum>

<end>

invariant: i >  0 & i <= array.length; 
variant: javaSubInt(array.length, i) 
mod: false

Figure 11.3 Symbolic execution tree of static method sum using a loop invariant

The usage of inlined methods is explained with help of the example in Listing 11.4
which executes in method run of class Main the run method of an IOperation.
Two different IOperation implementations are available.

The resulting symbolic execution tree under precondition operation != null

is shown in Figure 11.4. The target method is inlined first and its body is executed
between the method call and the corresponding method return node. The only state-
ment calls method run on the argument operation. As the concrete implementation
is unknown, symbolic execution has to split to consider both of them, shown by
the child branch condition nodes. The left branch continues execution in case that
operation is an instance of BarOperation and the right one in the other case.
Both branches inline the target method next, execute the return statement, return
from the called method, and finally terminate normally.

As in the case of loops, recursive method calls can lead to unbounded symbolic
execution trees. But even unfolding nonrecursive calls can quickly lead to infeasibly
large symbolic execution trees. To address this issue, instead of inlining the method
body, it is possible to replace a method call by a method contract (see Chapter 7).
This can also be useful when the source code of a method implementation is not
available (for example, if it is proprietary code or simply unfinished).
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1 public class Main {
2 public static String run(IOperation operation) {
3 return operation.run();
4 }
5 }
6

7 interface IOperation {
8 public String run();
9 }

10

11 class FooOperation implements IOperation {
12 public String run() {
13 return "foo";
14 }
15 }
16

17 class BarOperation implements IOperation {
18 public String run() {
19 return "bar";
20 }
21 }

Listing 11.4 Method call with inheritance

<end> <end>

<return strPool("bar") as result of Main.run(operation)> <return strPool("foo") as result of Main.run(operation)>

<return strPool("bar") as result of operation.run()> <return strPool("foo") as result of operation.run()>

return "bar"; return "foo";

<call operation.run()> <call operation.run()>

return operation.run();

BarOperation::instance(operation) = TRUE !BarOperation::instance(operation) = TRUE

<call Main.run(operation)>

<start>

Figure 11.4 Symbolic execution tree of static method run

Upon application of a method contract, symbolic execution is continued separately
for the specification cases corresponding to normal and to exceptional behavior. As
in the case of loop invariants, node icons are used to indicate if certain conditions
like preconditions or that the callee is not null could not be established.

Listing 11.5 shows the contract of method sum from Listing 11.2. The sum method
is used to compute the average of all array elements in Listing 11.6.

The symbolic execution tree resulting from the execution of method average,
where the contract of sum is used to handle the call to sum, is shown in Figure 11.5.
The left branch terminates with an uncaught ArithmeticException in case that
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1 /*@ normal_behavior

2 @ requires array != null;
3 @ ensures \result == (\sum int i; i >= 0 && i < array.length; array[i]);
4 @
5 @ also

6 @
7 @ exceptional_behavior

8 @ requires array == null;
9 @ signals_only NullPointerException;

10 @ signals (NullPointerException) true;
11 @*/
12 public static /*@ pure @*/ int sum(/*@ nullable @*/ int[] array) {
13 // ...
14 }

Listing 11.5 Method contract of method sum from Listing 11.2

1 public static int average(/*@ nullable @*/ int[] array) {
2 return sum(array) / array.length;
3 }

Listing 11.6 Average of all array elements

the array is empty whereas the middle branch terminates normally after the computed
average is returned. The right branch terminates with an uncaught Throwable in
case the array is null.

Table 11.1 summarizes the different nodes which are used in our notion of a
symbolic execution tree. Readers familiar with the Eclipse IDE will notice that the
icons in start and statement nodes are compatible with Eclipse usage.

11.3 Symbolic Execution Debugger

The Symbolic Execution Debugger with KeY as symbolic execution engine allows
the user to execute any Java method or any Java statement(s) symbolically resulting in
a symbolic execution tree as discussed in Section 11.2. The main goal of the tool is to
help program understanding. Like a traditional debugger it allows the user to control
the execution, to inspect states and to suspend execution at defined breakpoints.

11.3.1 Installation

The Symbolic Execution Debugger and other Eclipse extensions provided by the
KeY project can be added to an existing Eclipse installation via an update-site. The
supported Eclipse versions and the concrete update-site URLs are available on the
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<uncaught java.lang.Throwable>

<exceptional return of <call Numbers.average(array)>>

<uncaught java.lang.ArithmeticException>

<exceptional return of <call Numbers.average(array)>>

<end>

<return 
 quotient_4 {result_0 >  -1}, 
 quotient_3 * -1 {result_0 < 0}
as result of Numbers.average(array)>

result_0 = sum(array) catch(exc_0)
pre: array = null | !array = null
post: (   array = null
   ->   !exc_0 = null
      &   java.lang.NullPointerException::instance(exc_0)
        = TRUE)
& (   !array = null
   ->     result_0
        = javaCastInt(sum{int i;}(\if (  inInt(i)
                                       & (  i >= 0
                                          &   i
                                            < array.length
                                          & inInt(i)))
                                      \then (TRUE)
                                      \else (FALSE),
                                  array[i]))
      & exc_0 = null)
mod: \if (true)  \then (empty)  \else (allLocs)
\cap \if (!array = null)
         \then (empty)
         \else (allLocs)
termination: diamond

Post (sum): !array = null

array.length = 0 !array.length = 0

Exceptional Post (sum): array = null

return sum(array)/array.length;

<call Numbers.average(array)>

<start>

Figure 11.5 Symbolic execution tree of method average using a contract for the called method

KeY website (www.key-project.org). When reading the following sections for the
first time, we strongly recommend to have a running Eclipse installation with the
SED extension at hand, so that the various features can be tried out immediately. We
assume that the reader is familiar with the Java perspective of the Eclipse IDE.

11.3.2 Basic Usage

The main use case of the SED using KeY is to execute a Java method symbolically. It
can be achieved by opening the context menu of a method and by selecting Debug As,
Symbolic Execution Debugger (SED). Alternatively, it is possible to execute individual
Java statements by selecting them first in the Java text editor and then by selecting
the same context menu entry. Additional knowledge to limit feasible execution paths
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Table 11.1 Symbolic execution tree nodes

Icon & Node Type Description

Start The root of a symbolic execution tree.
Branch Statement The program state before a branch statement (if and switch in

Java) is executed.
Loop Statement The program state before a loop (while, do, for and for-each

loop in Java) is executed. It occurs only once when the loop is
entered the first time.

Loop Condition The program state before a loop condition is executed. It is repeated
in every loop iteration.

Statement The program state before a statement which is not a branch state-
ment, loop statement and loop condition is executed.

Branch Condition The condition under which a branch is taken.
Termination The last node of a branch indicating that the program terminates

normally. If the postcondition does not hold icon is used instead.
Exceptional Termination The last node of a branch indicating that the program terminates

with an uncaught exception. If the postcondition does not hold
icon is used instead.

Method Call The event that a method body is inlined and will be executed next.
Method Return The event that a method body is completely executed. Execution

will be continued in the caller of the returned method.
Exceptional Method Return The event that a method returns by throwing an exception. Execu-

tion will be continued where the exception is caught. Otherwise,
execution finishes with an exceptional termination node.

Method Contract A method contract is applied to treat a method call. If the object on
which the method is called can be null, icon is used instead. If
the precondtion does not hold, icon shows this circumstance. If
both do not hold, icon is used.

Loop Invariant A loop invariant is applied to treat a loop. If it is initially not
fulfilled the icon is used instead.

Loop Body Termination The branch of a loop invariant node which executes only loop
guard and loop body once is completed. If the loop invariant does
not hold, the icon is used instead.

can be supplied as a precondition in the Debug Configuration. Also a full method
contract can be selected instead of specifying a precondition.2 In this case icons of
termination nodes will indicate whenever the postcondition is not fulfilled. After
starting execution, it is recommend to switch to the perspective Symbolic Debug
which contains all relevant views explained in Table 11.2.

Figure 11.6 shows a screenshot of the Symbolic Debug perspective in which the
symbolic execution tree of method equals, whose implementation is shown in the
bottom right editor, is visualized. The method checks whether its Number argument
instance has the same content as this, which is named self in KeY. The left branch
represents the case when both instances have the same content, whereas the content
is different in the middle branch. The right branch terminates with an uncaught
NullPointerException, because the argument is null.

2 The use of a method contract activates full JML support including non_null defaults.
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Table 11.2 Views of perspective Symbolic Debug

View Description

Debug Shows symbolic execution trees of all launches, as well
as to switch between them and to control execution.

Symbolic Execution Tree Visualizes symbolic execution tree of selected launch.
Symbolic Execution Tree (Thumbnail) Miniature view of the symbolic execution tree for navi-

gation purposes.
Variables Shows the visible variables and their symbolic values.
Breakpoints Manages the breakpoints.
Properties Shows all information of the currently selected ele-

ment.
Symbolic Execution Settings Customizes symbolic execution, e.g., defines how to

treat method calls and loops.

Figure 11.6 Symbolic Execution Debugger: Interactive symbolic execution

The additional frames (rectangles) displayed in view Symbolic Execution Tree of
Figure 11.6 represent the bounds of code blocks. Such frames can be independently
collapsed and expanded to abstract away from the inner structure of code blocks,
thus achieving a cleaner representation of the overall code structure by providing
only as much detail as required for the task at hand. A collapsed frame contains
only one branch condition node per path (namely the conjunction of all branch
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conditions of that particular path), displaying the constraint under which the end of
the corresponding code block is reached. In Figure 11.7, the method call node is
collapsed. Collapsed frames are colored green, if all execution paths reached the end
of the frame. Otherwise they are colored orange. Expanded frames are colored blue.

Figure 11.7 Symbolic Execution Debugger: Collapsed frame (frame color is green)

The symbolic program state of a selected node is shown in the view Variables.
The details of a selected variable (e.g. additional constraints) or symbolic execution
tree node (e.g. path condition, call stack, etc.) are available in the Properties view.
The source code line corresponding to the selected symbolic execution tree node
is highlighted in the editor. Additionally, the editor highlights statements and code
members reached during symbolic execution.

The Symbolic Execution Settings view lets one customize symbolic execution,
e.g., one can choose between method inlining and method contract application.
Breakpoints suspend the execution and are managed in the Breakpoints view.

In Figure 11.6 the symbolic execution tree node return true; is selected, which
is indicated by a darker color. The symbolic value of field content of the current
instance self and of the argument instance n are identical. This is not surprising,
because this is exactly what is enforced by the path condition. A fallacy and source
of defects is to implicitly assume that self and n refer to different instances as they
are named differently and here also because that an object is passed to itself as a
method argument. This is because the path condition is also satisfied if n and self
reference the same object. The SED helps to detect and locate unintended aliasing
by determining and visualizing all possible memory layouts w.r.t. the current path
condition.

Selecting context menu item Visualize Memory Layouts of a symbolic execution
tree node creates a visualization of possible memory layouts as a symbolic object
diagram, see Figure 11.8. It resembles a UML object diagram and shows (i) the
dependencies between objects, (ii) the symbolic values of object fields and (iii) the
symbolic values of local variables of the current state.

The root of the symbolic object diagram is visualized as a rounded rectangle
and shows all local variables visible at the current node. In Figure 11.8, the local
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variables n and self refer to objects visualized as rectangles. The symbolic value
of the instance field content is shown in the lower compartment of each object.
The local variable exc is used by KeY to distinguish among normal and exceptional
termination.

The scrollbar of the toolbar (near the origin of the callout) allows one to select
different possible layouts and to switch between the current and the initial state
of each layout. The initial state shows how the memory layout looked before the
execution started resulting in the current state. Figure 11.8 shows both possible
layouts of the selected node return true; in the current state. The second memory
layout (inside the callout) represents the situation, where n and self are aliased.

Figure 11.8 Symbolic Execution Debugger: Possible memory layouts of a symbolic state

11.3.3 Debugging with Symbolic Execution Trees

The Symbolic Execution Debugger allows one to control execution like a traditional
debugger and can be used in a similar way. A major advantage of symbolic execution
is that it is not required to start at a predefined program entry point and to run the
program until the point of interest is reached. Instead, the debug session can start
directly at the point of interest. This avoids building up large data structures and the
memory will contain only the variables used by the code of interest. If knowledge
about the conditions under which a failure can be observed is available, it can be
given as a precondition to limit the number of explored execution paths.

The main task of the user is, like in a traditional debugger, to control execution
and to comprehend each performed step. It is helpful to focus on a single branch
where the execution is expected to reach a faulty state. If this is not the case, the
focus can be changed to a different branch. There is no need for a new debugging
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session or to find new input values resulting in a different execution path. It is always
possible to go back to previous steps, because each node in the symbolic execution
tree provides the full symbolic state.

Of special interest are splits, because their explicit rendering in the symbolic
execution tree constitutes a major advantage of the SED over traditional debuggers.
Unexpected splits or missing expected splits are good candidates for possible sources
of defects. This is explained by example. Listing 11.7 shows a defective part of a
Mergesort implementation for sorting an array called intArr. The exception shown
in Listing 11.8 was thrown during a concrete execution of a large application that
contained a call to sort. It seems that method sortRange calls itself infinitely often
in line 9 until the call stack is full, which happened in line 7.

Either the value of l or the value of r is the termination criterion. Using a
traditional debugger the user has to execute the whole program with suitable input
values until method sort is executed. From this point onward, she may control the
execution, observe how the r value is computed and try to find the origin of the
failure. With the SED, however, she can start execution directly at method sort.
Clearly, the array intArr needs to be not null. This knowledge can be expressed as
precondition intArr != null. The resulting symbolic execution tree in Figure 11.9
shows already after a few steps that the if-statement is not branching in case that
intArr is not empty and the defect is found (the comparison should have been
l < r).

int q = (l_1+r_1)/2;

if (l_1<=r_1)

<call Mergesort.sortRange(intArr_2,l_1,r_1)> <end>

sortRange(intArr_1,l,q); <return of sort>

int q = (l+r)/2; <return of sortRange>

if (l<=r)

intArr.length >  0 intArr.length < 1

<call Mergesort.sortRange(intArr_1,l,r)>

sortRange(intArr,0,intArr.length-1);

<call Mergesort.sort(intArr)>

<start>

Branching expected

Figure 11.9 Symbolic Execution Tree of the mergesort implementation in Listing 11.7

3 Modified version of the Mergesort implementation by Jörg Czeschla,
see javabeginners.de/Algorithmen/Sortieralgorithmen/Mergesort.php
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1 public class Mergesort {
2 public static void sort(int[] intArr) {
3 sortRange(intArr, 0, intArr.length - 1);
4 }
5

6 public static void sortRange(int[] intArr, int l, int r) {
7 if (l <= r) {
8 int q = (l + r) / 2;
9 sortRange(intArr, l, q);

10 sortRange(intArr, q + 1, r);
11 merge(intArr, l, q, r);
12 }
13 }
14

15 private static void merge(int[] intArr, int l, int q, int r) {
16 int[] arr = new int[intArr.length];
17 int i, j;
18 for (i = l; i <= q; i++) {
19 arr[i] = intArr[i];
20 }
21 for (j = q + 1; j <= r; j++) {
22 arr[r + q + 1 - j] = intArr[j];
23 }
24 i = l;
25 j = r;
26 for (int k = l; k <= r; k++) {
27 if (arr[i] <= arr[j]) {
28 intArr[k] = arr[i];
29 i++;
30 }
31 else {
32 intArr[k] = arr[j];
33 j--;
34 }
35 }
36 }
37 }

Listing 11.7 Defective part of a mergesort implementation3

11.3.4 Debugging with Memory Layouts

It is easy to make careless mistakes in operations which modify data structures. To
find them with a traditional debugger can be time consuming, because large data
structures have to be inspected after each execution step. A complication is that a
program state contains not only the data structure of interest, but all information
computed before the state of interest is reached. Traditional debuggers present the
current state typically as variable-value pairs in a list or tree. This representation
makes it very hard to figure out object type data structures.
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Exception in thread "main" java.lang.StackOverflowError
at Mergesort.sortRange(Mergesort.java:7)
at Mergesort.sortRange(Mergesort.java:9)
at Mergesort.sortRange(Mergesort.java:9)
at Mergesort.sortRange(Mergesort.java:9)
...

Listing 11.8 Exception thrown by the mergesort implementation of Listing 11.7

With the Symbolic Execution Debugger it is possible to visualize the current
state as well as the initial state from which the execution started in the form of a
symbolic object diagram. As an example, consider the rotate left operation of an
AVL tree. Each node in such a tree has a left and a right child and it knows its parent
as well. Again, symbolic execution is started directly in the method of interest, here
the rotateLeft method and we let the SED compute all memory layouts for one of
its return nodes.

Consider the initial state in Figure 11.10. The node to rotate is named current
and it is the root of the tree because its parent is null. It has a right child, which in
turn has a left child. The AVL tree itself is named self. Additionally, precondition
current != null && current.right != null is used to ensure that the nodes
to rotate exist.

current.right.left : Nodeself : AVLTree
self

left

<start> resulting in <return of self.rotateLeft(current);> current : Node

parent = null
current.right : Node

current right

Figure 11.10 Initial symbolic object diagram of an AVL Tree rotate left operation

The symbolic state automatically computed and visualized by the SED after
performing the rotation is shown in Figure 11.11. It shows the initial objects with all
performed changes. By inspecting this diagram it is obvious that the parent of object
current.right.left was not correctly updated because its parent is now the node
itself.

11.3.5 Help Program and Specification Understanding

An important feature of symbolic execution trees is that they show control and data
flow at the same time. Thus they can be used to help understanding programs and
specifications just by inspecting them. This can be useful during code reviews or
in early prototyping phases, where the full implementation is not yet available. It
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current.right.left : Node
parent

<return of self.rotateLeft(current);> current : Node current.right : Node

parent = null

self : AVLTree

current

self

right

parent

left

root

Self reference after rotation

Figure 11.11 Current symbolic object diagram of an AVL Tree rotate left operation

works best, when some method contracts and/or invariants are available to achieve
compact and finite symbolic execution trees. However, useful specifications can be
much weaker than would be required for verification.

For example, Listing 11.9 shows a defective implementation of method indexOf
which should return the first array index excepted by the given Filter or -1 in case
none of the array elements were accepted. The method is specified by a basic method
contract limiting the expected input values. In addition, a very simple loop invariant
is given.

The corresponding symbolic execution tree is shown in Figure 11.12. It captures
the full behavior of indexOf. Without checking any details, one can see that the
left-most branch terminates in a state where the loop invariant is not preserved. Now,
closer inspection shows the reason to be that, when the array element is found, the
variable i is not increased, hence the decreasing clause of the invariant is violated.
The two branches below the use case branch correspond to the code after the loop
has terminated. In one case an element was found, in the other not. Looking at the
return node, however, we find that in both cases instead of the index computed in
the loop, the value of i is returned.

As this example demonstrates, symbolic execution trees can be used to answer
questions, for example, about thrown exceptions (none in the example) or returned
values. Within the SED the full state of each node is available and can be visualized.
Thus it is easily possible to see whether and where new objects are created and which
fields are changed when (comparison between initial and current layout). Using
breakpoints, symbolic execution is continued until a breakpoint is hit on any branch.
Thus it can be used to find execution paths (i) throwing a specified exception, (ii)
accessing or modifying a specified field, (iii) calling or returning a specified method
or (iv) causing a specified state.

11.3.6 Debugging Meets Verification

As the SED is based on symbolic execution it actually verifies the target program for
the contract specified in the debug configuration. The program was proven correct
if and only if each branch in the symbolic execution tree ends with a termination
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1 public class ArrayUtil {
2 /*@ normal_behavior

3 @ requires \invariant_for(filter);
4 @*/
5 public static int /*@ strictly_pure @*/ indexOf(Object[] array,
6 Filter filter) {
7 int index = -1;
8 int i = 0;
9 /*@ loop_invariant i >= 0 && i <= array.length;

10 @ decreasing array.length - i;
11 @ assignable \strictly_nothing;
12 @*/
13 while (index < 0 && i < array.length) {
14 if (filter.accept(array[i])) {
15 index = i;
16 }
17 else {
18 i++;
19 }
20 }
21 return i;
22 }
23

24 public static interface Filter {
25 /*@ normal_behavior

26 @ requires true;
27 @ ensures true;
28 @*/
29 public boolean /*@ strictly_pure @*/ accept(/*@ nullable @*/
30 Object object);
31 }
32 }

Listing 11.9 A defective and only partially specified implementation

node and no warning icons are raised in the whole tree. This means that all branches
terminate in a state where the specified postcondition is fulfilled. If a method call
is approximated by a method contract, the precondition- and caller-no-null checks
must have been successful, too. Likewise, all applied loop invariants are valid at the
start of their loop and are preserved by the loop body.

Whereas a proof tree in KeY shows all performed steps during the proof, includ-
ing intermediate steps of symbolic execution and proofs of first-order verification
conditions, a symbolic execution tree contains only nodes that correspond to reach-
able program states. Hence, the debugger provides a view on a KeY proof from the
developer’s perspective, hiding intermediate and nonprogram related steps. Program
states are visualized in a user-friendly way and are not encoded into side formulas of
sequents.

Another advantage of SED over the KeY system is that insufficient or wrong
specifications are directly highlighted. Whenever a symbolic execution tree node
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<loop body end> <loop body end>

index_1=i; i++;

result_0 = var.accept(var_1) catch(exc_0)
pre: var.<inv>
post: var.<inv> & exc_0 = null
mod: empty, creates no new objects
termination: diamond

result_0 = TRUE !result_0 = TRUE

if (_filter.accept(_array[i]))

<end>

<return i_0 as result of ArrayUtil.indexOf(_array,_filter)>

<end>

<return i_0 as result of ArrayUtil.indexOf(_array,_filter)>

return i;

index_1_0 >  -1

index_1_0 < 0

invariant: i >= 0 & i <= _array.length;
variant: javaSubInt(_array.length, i)
mod: false

Body Preserves Invariant:   index_1_0 < 0
& (index_1_0 >  -1 | i_0 >= 0 & array.length >  i_0)

Use Case:   (index_1_0 < 0 | i_0 >= 0 & array.length >= i_0)
& (index_1_0 >  -1 | i_0 >= 0 & array.length = i_0)

int i = 0;

int index = -1;

<call ArrayUtil.indexOf(_array,_filter)>

<start>

index_1<0&&i<_array.length
Return of index
index_1_0
expected

Return of index
index_1_0
expected

Loop invariant does not hold

Figure 11.12 Symbolic execution tree of method indexOf (see Listing 11.9)

is crossed out, then something went wrong in proving the verification conditions
for that path. The user can then inspect the parent nodes and check whether the
implementation or the specifications contain a defect. More specifically, if the post-
condition in a termination node is not fulfilled, then the symbolic program state
at that point should be inspected. Wrong values relative to the specified behavior
indicate a defect in the implementation. Values that have been changed as expected,
but which are not mentioned in the specification indicate that the specification has to
be extended. Moreover, crossed out method call and loop invariant nodes indicate
that the precondition of the proven method contract is too weak or that something
went wrong during execution. If a loop invariant is not preserved, the state of the
loop body at the termination nodes gives hints on how to adjust the loop invariant.

11.3.7 Architecture

The Symbolic Execution Debugger (SED) is an Eclipse extension and can be added
to existing Eclipse-based products. In particular, SED is compatible with the Java
Development Tools (JDT) that provide the functionality to develop Java applications
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in Eclipse. To achieve this and also a user interface that seamlessly integrates with
Eclipse, SED needs to obey a certain architecture, which is shown in Figure 11.13.
The gray-colored components are part of the Eclipse IDE, whereas the remaining
components are part of the SED extension.

Workspace

Debug CoreJDT Core/Debug

Symbolic Debug Core

KeY Debug Core

Workbench

Debug UI JDT UI

Visualization UI

Symbolic Debug UI

KeY Debug UI

Figure 11.13 Architecture of the Symbolic Execution Debugger (SED)

The foundation is the Eclipse Workspace which provides resources such as
projects, files and folders, and the Eclipse Workbench which provides the typical
Eclipse user interface with perspectives, views and editors. Eclipse implements on top
of these the debug platform which defines language-independent features and mech-
anisms for debugging. Specifically, Debug Core provides a language-independent
model to represent the program state of a suspended execution. This includes threads,
stack frames, variables, etc. Debug UI is the user interface to visualize the state
defined by the debug model and to control execution. JDT Core defines the func-
tionality to develop Java applications, including the Java compiler and a model to
represent source code, whereas JDT Debug uses the debug platform to realize the
Java debugger. Finally, JDT UI provides the user interface which includes the editor
for Java source files.

The Symbolic Execution Debugger is based on the components provided by
Eclipse. First, it extends the debug platform for symbolic execution in general.
Second, it provides a specific implementation based on KeY’s symbolic execution
engine, described in Section 11.4.

Symbolic Debug Core extends the debug model to represent symbolic execution
trees. This is done in a way that is independent of the target programming language
and of the used symbolic execution engine.4 It is also necessary to extend the debug-
ger user interface, which is realized in Symbolic Debug UI. It contains in particular
the tree-based representation of the symbolic execution tree that is displayed in the
Debug view. The graphical representation of the symbolic execution tree shown in

4 Each implementation of the symbolic debug model can define new node types to represent
additional language constructs not covered by Table 11.1.
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the Symbolic Execution Tree view as well as the visualization of memory layouts is
provided language-independently by Visualization UI. Finally, KeY Debug Core
implements the symbolic debug model with help of KeY’s symbolic execution engine
(implemented as pure Java API without any dependency to Eclipse). The functionality
to debug selected code and to customize the debug configuration is provided by KeY
Debug UI.

The extendable architecture of SED allows one to reuse the symbolic debug
model for symbolic execution to implement alternative symbolic debuggers while
profiting from the visualization functionality. All that needs to be done is to provide
an implementation of the symbolic debug model for the target symbolic execution
engine. KeY’s symbolic execution API itself is part of the KeY framework and has
no dependencies to the Symbolic Execution Debugger or to Eclipse. This makes it
possible to use it like any other Java API.

11.4 A Symbolic Execution Engine based on KeY

The KeY verification system (see Chapter 15) is based on symbolic execution, but it
is not directly a symbolic execution engine. In this section we describe how to realize
a symbolic execution engine as API based on the KeY system. It is used for instance
by the Symbolic Execution Debugger (see Section 11.3). We attempted to make this
section self-contained, but it is certainly useful to have read Chapter 3 in order to
appreciate the details.

11.4.1 Symbolic Execution Tree Generation

All the required functionality is implemented by KeY, because it already performs
symbolic execution to verify programs. The simplified5 schema of proof obligations
to verify a piece of Java code looks as follows in KeY:

=) pre ! U

⌧
try {codeOfInterest}
catch (Exception e) {exc = e}

�
post

The meaning is as follows: assuming precondition pre holds and we are in a sym-
bolic state given by U , then the execution of the code between the angle brack-
ets terminates, and afterwards postcondition post holds. The catch-block around
codeOfInterest is used to assign the caught exception to variable exc which can be
used by the post condition to separate normal from exceptional termination. The code
of interest is usually the initial method call but can be also a block of statements.

Rules applied on a hcodeipost modality rewrite the first (active) statement in
code and then continue symbolic execution. Symbolic execution is performed at

5 The proof obligation is explained in detail in Section 8.3.1
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the level of atomic expressions, such that complex Java statements and expressions
have to be decomposed before they can be executed. For example, the method
call even(2 + 3) requires a simple argument expression, so that the sum must
be computed before the method call can be performed. As a consequence, many
intermediate steps might be required to execute a single statement of source code.
An empty modality hipost can be removed, and the next step will be to show that the
postcondition is fulfilled in the current proof context.

All symbolic execution rules have in common that, if necessary, they will split
the proof tree to cover all conceivable execution paths. This means that the rules
themselves do not prune infeasible paths. It is the task of the automatic proof strategy
(or the user) to check the infeasibility of new proof premisses before execution is
continued.

We realize a symbolic execution engine on top of the proof search in KeY by
extracting the symbolic execution tree for a program from the proof tree for the
corresponding proof obligation. The main tasks to be performed are:

• Define a ‘normal form’ for proof trees that makes them suitable for generation
of a symbolic execution tree.

• Design a proof strategy that ensures proof trees to be of the expected shape.
• Separate feasible and infeasible execution paths.
• Identify intermediate proof steps stemming from decomposition of complex

statements into atomic ones. Such intermediate steps are not represented in the
symbolic execution tree.

• Realize support for using specifications as an alternative to unwind loops and to
inline method bodies.

It is important to postpone any splits of the proof tree caused by an attempt to
show the postcondition until symbolic execution has completely finished. Otherwise,
multiple proof branches representing the same symbolic execution path might be
created. Whereas this does not affect the validity of a proof, it would cause redundant
branches in a symbolic execution tree.

We also want to have at most one modality formula (of the form hcodeipost) per
sequent, otherwise it is not clear what the target of symbolic execution is. Later, we
will see that to support the use of specifications, this condition has to be relaxed.

The standard proof strategy used by KeY for verification almost ensures proof
trees of the required shape. It is easy to modify this strategy: first, we forbid for the
moment symbolic execution rules that introduce multiple modalities; second, we
stipulate that all rules not pertaining to symbolic execution and that cause splitting are
only applied after finishing symbolic execution. Even with these restrictions the proof
strategy is often powerful enough to close infeasible execution paths immediately.

After the strategy stops, symbolic execution tree generation takes place. During
this it is required to separate proof branches representing a feasible execution path
from infeasible ones. This information is not available in the proof itself, because it
is not needed for proving. Complicating is also the fact that KeY throws information
away that is not needed for verification, however, it might later be needed for sym-
bolic execution tree generation. This can be easily solved with the following trick.
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The uninterpreted predicate SET is added to the postcondition of the initial proof
obligation:

=) pre ! U

⌧
try {codeOfInterest}
catch (Exception e) {exc = e}

�
post ^ SET(exc)

The effect is that infeasible paths will be closed as before and feasible paths remain
open since no rules exist for the predicate SET . Variables of interest are listed as
parameters, so KeY is not able to remove them for efficiency if no longer needed.

To separate statements that occur in the source code from statements that are
introduced by decomposition we use meta data in the form of suitable tags. Each
statement occurring in the source code contains position information about its source
file as well as the line and column where it was parsed. Statements introduced during
a proof have no such tags.

The mechanisms described above are sufficient to generate a symbolic execution
tree by iterating over a given proof tree. Each node in a proof tree is classified
according to the criteria in Table 11.3 and added to the symbolic execution tree. Java
API methods can optionally be excluded. In this case only method calls to non-API
methods are added and statement nodes are only included if they are contained in
non-API methods.

Table 11.3 Classification of proof nodes for symbolic execution tree nodes (excluding specifica-
tions)

SET node type Criterion in KeY proof tree

Start The root of the proof tree.
Method Call The active statement is a method body statement.
Branch Statement The active statement is a branch statement and the position information

is defined.
Loop Statement The active statement is a loop statement, the position information is

defined, and it is the first loop iteration.
Loop Condition The active statement is a loop statement and the position information is

defined.
Statement The active statement is not a branch, loop, or loop condition statement

and the position information is defined.
Branch Condition The parent of proof tree node has at least two open children and at

least one child symbolic execution tree node exist (otherwise split is not
related to symbolic execution).

Normal Termination The emptyModality rule is applied and exc variable has value null.
Exceptional Termination The emptyModality rule is applied and exc variable has not value null.
Method Return A rule which performs a method return by removing the current method

frame is applied and the related method call is part of the symbolic
execution tree.

To detect the use of specifications in the form of method contracts and loop
invariants it is sufficient to check whether one of the rules UseOperationContract or
LoopInvariant was applied. The problem is that specifications may contain method
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calls, as long as these are side effect-free (so-called query methods). During the KeY
proof these give rise to additional modalities in a sequent. Hence, we must separate
such ‘side executions’ from the target of symbolic execution. This is again done with
the help of meta information. We add a so-called term label SE to the modality of
the proof obligation, such as in:

=) pre ! U

⌧
try {codeOfInterest}
catch (Exception e) {exc = e}

�
(post ^ SET(exc))«SE»

A term label is a noncorrectness relevant information attached to a term and main-
tained during a proof. When symbolic execution encounters a modality with an SE
label, it will be inherited to any child modalities. It is easy to modify the KeY proof
strategy to ensure that modalities without an SE label are executed first, because their
results are required for the ongoing symbolic execution. Finally, during symbolic
execution tree generation only nodes with an SE label are considered.

A complication is that symbolic execution of modalities without an SE label may
cause splits in the proof tree, but the knowledge gained from their execution is used in
symbolic execution of the target code. Such splits have to be reflected in the symbolic
execution tree. We will discuss later in Section 11.4.3 how they can be avoided.

When a method contract is applied, two branches continue symbolic execution,
one for normal and one for exceptional method return. Two additional branches
check whether the precondition is fulfilled in the current state and whether the caller
object is null. The latter two are proven without symbolic execution and their proof
branches will be closed if successful. Boolean flags (represented as crossed out icons
in the SED) on a method contract node indicate their verified status as described in
Section 11.2.

The situation is similar for loop invariant application: one proof branch checks
whether the loop invariant is initially (at the start of the loop) fulfilled. A Boolean flag
(icon in the SED) on the loop invariant node indicates its verified status. A second
branch continues symbolic execution after the loop and a third branch is used to
show that the loop invariant is preserved by the loop guard and the loop body. The
latter is complex, because in case an exception is thrown or that the loop terminates
abnormally via a return, break or continue, the loop invariant does not need to
hold. The loop invariant rule (see Section 3.7.2) of KeY solves this issue by first
executing loop guard and loop body in a separate modality. If this modality terminates
normally, then the proof that the loop invariant holds is initiated. Otherwise, symbolic
execution is continued in the original modality, without assuming that the invariant
holds. As above, the problem of multiple modalities is solved by term labels. We add
a (proof global) counter to each SE label. The label of the original proof obligation is
SE(0) and it is incremented whenever needed. KeY’s proof strategy is modified to
ensure that symbolic execution is continued in the modality with the highest counter
first.

The loop invariant rule encodes in the preserves branch whether a loop iteration
terminated abnormally or normally. Depending on the kind of termination different
properties have to be shown. The different cases are distinct subformulas of the form
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reasonForTermination ! propertyToHold

We label the subformula reasonForTermination which characterizes the normal ter-
mination case with a LoopInvariantNormalBehaviorTermLabel term label6. If this
labeled formula could be simplified to true, then a loop body termination node is
added to the corresponding branch of the symbolic execution tree.

There is one special case we have not covered yet. The proof branches that check
whether a loop invariant holds initially, whether a precondition holds, and whether the
caller object is null, each can be proven without symbolic execution, as they contain
no modality. This does not hold, however, when a loop invariant or a method contract
is applied on the branch that shows the invariant to be preserved by loop condition
and loop body. The reason is that in this case the modality which continues symbolic
execution in case of an abnormal loop exit is still present and the proof strategy is free
to continue symbolic execution on it. We are not interested in this execution, because
it does not contribute to the verification of the actual proof obligation. Consequently,
all term labels have to be removed from proof branches that only check the conditions
listed above.

11.4.2 Branch and Path Conditions

Applicability of a proof rule in KeY generally depends only on the sequent it is
applied to, not on other nodes in the proof tree. Consequently, KeY does not maintain
branch and path conditions during proof construction, because the full knowledge
gained by a split is encoded in the child nodes. A branch condition can be seen as
the logical difference between the current node and its parent and the path condition
is simply the conjunction over all parent branch conditions or, in other words, the
logical difference between the current node and the root node.

In the case of symbolic execution rules, branch conditions are not generated from
modalities to avoid a proliferation of modality formulas. Instead, splitting symbolic
execution rules rewrite the active statement contained in their modality and add
knowledge gained by the split in the succedent of the premisses. Consequently,
branch conditions in symbolic execution trees are defined by:

⇣^
added antecedent formula

⌘
^¬

⇣_
added succedent formula

⌘

Method contract and loop invariant rules are so complex that they cannot be
expressed schematically in KeY with the help of taclets (see Chapter 4), but are com-
puted. After applying a method contract the branch conditions contain the knowledge
that the caller object is not null and that the conjunction of all preconditions (both
for normal and exceptional termination) hold. The branch condition on the proof
branch ensuring that an invariant is preserved is the conjunction of the loop invariant

6 For technical reasons the label is currently around the whole implication and the analysis checks
the evaluation of the left subformula (reasonForTermination).
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and the loop guard. The branch condition on the branch that continues symbolic
execution after the loop is the conjunction of the loop invariant and the negated loop
guard.

11.4.3 Hiding the Execution of Query Methods

As pointed out above, the presence of query methods in specifications or in loop
guards may spawn modalities that have nothing to do with the target code. These
are used to compute a single value, such as a method return value or a Boolean flag.
Even though their execution is hidden in the symbolic execution tree, possible splits
in the proof tree caused by them are visible, because the knowledge gained from
them is used during subsequent symbolic execution. Such splits complicate symbolic
execution trees, so we want to get rid of them.

These modalities have in common the fact that they are top level formulas in a
sequent that compute a single value const in the current symbolic state U :

U htmp = ...iconst=̇tmp

This computation is ‘outsourced’ from the main proof via a built-in rule that executes
the modality in a side proof. The initial proof obligation of the side proof is:

G =) U htmp = ...iResultPredicate(tmp),D

It executes the modality in state U with an uninterpreted predicate ResultPredicate
as postcondition. That predicate is parameterized with variable tmp, which will be
replaced during the proof by its computed value. G and D are all first-order top-level
formulas of the original sequent, representing the context knowledge7.

The standard KeY verification strategy is used in the side proof. If it stops with
open goals, where no rule is applicable, the results can be used in the original
sequent.8 Each open branch in the side proof contains a result res as parameter
of the predicate ResultPredicate(res) that is valid relative to a path condition pc
(Section 11.4.2). Now for each such open branch a new top-level formula is added
to the sequent from which the side proof was outsourced. If the modality with the
query method was originally in the antecedent, then pc ! const=̇res is added to the
antecedent, otherwise, pc ^ const=̇res is added to the succedent. The last step is to
clean up the sequent and to remove the now redundant modality of the query.

7 In the context of this chapter, formulas containing a modality or a query are excluded from the
context knowledge. Otherwise, a side proof would reason about the original proof obligation as
well.
8 The side proof is never closed, because the predicate in the postcondition is not provable. If the
proof terminates, because the maximal number of rule applications has been reached, then the side
proof is abandoned.
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11.4.4 Symbolic Call Stack

KeY encodes the method call stack with help of method frames directly in the Java
program of a modality. For each inlined method, a new method frame is added
that contains the code of the method body to execute. For more details, we refer to
Section 3.6.5.

During symbolic execution tree generation the symbolic call stack has to be
maintained. Whenever a method call node is detected, it is pushed onto the call stack.
All other nodes remove entries from the maintained call stack until its size is equal
to the number of method frames in their modality.

The branch of the loop invariant rule that checks whether the loop body preserves
the invariant contains multiple modalities with different call stacks. The modality
that executes only the loop guard and the loop body contains only the current method
frame. All parent method frames are removed. This requires to maintain a separate
call stack for each counter used in SE term labels. Whenever a modality with a new
counter is introduced, its call stack is initialized with the top entry from the call stack
of the modality where the loop invariant was applied.

11.4.5 Method Return Values

Method return nodes in a symbolic execution tree that return from a method declared
as nonvoid allow one to access return values.

Several proof rules are involved in a method return. Assuming that the argu-
ment of the return statement has been decomposed into a simple expression, the
methodCallReturn rule executes the return statement. For this, the rule adds an as-
signment statement that assigns the returned value to the result variable given in the
current method frame. As the result variable is then no longer needed, it is removed
from the method frame. A subsequent rule executes that assignment and yet another
rule completes the method return by removing the, by now, empty method frame.

According to Table 11.3 a method return node is the proof tree node that removes
the current method frame, say cmf. At this point, however, the name of the result
variable is no longer available. This requires to go back to the parent proof tree
node r, where rule methodCallReturn which assigns the returned value to the result
variable of cmf was applied.

A side proof, similar to the one in Section 11.4.3, can be performed to compute
returned values and the conditions under which they are valid. The proof obligation
is:

G =) U

⌧
cmf(result->resVar, ...):
return resExp;

�
ResultPredicate(resVar),D

The symbolic state U is that of the return node r. Only the return statement is exe-
cuted in the current method frame cmf. Postcondition is the uninterpreted predicate
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ResultPredicate that collects the computed result. G and D are all first-order top-level
formulas of the sequent of r representing the context knowledge. After applying the
standard verification strategy, each open branch represents a return value valid under
its path condition.

11.4.6 Current State

The values of visible variables in each symbolic execution tree node can be inspected.
Visible variables are the current this reference, method parameters, and variables
changed by assignments. This includes local variables and static fields, but highlights
also two differences as compared to Java:

• KeY does not maintain local variables on the call stack. If a name is already in
use it is renamed instead. As a consequence, the current state contains also local
variables from all previous methods in the call stack.

• For efficiency, KeY removes variables from symbolic states as soon as they are
no longer needed. This means that a previously modified local variable may get
removed if it is not used in the remaining method body.

Each visible variable can have multiple values caused by, for instance, aliasing, or
because nothing is known about it yet. The values for a variable loc, together with
the conditions under which they are valid, are computed in a side proof, similar as in
Section 11.4.3. The proof obligation is G =) U ResultPredicate(var),D using the
same notation as above.

If a value is an object, then it is possible to query its fields in the same way. This
brings the problem that it is possible to query fields about which no information
is contained in the current sequent. Imagine, for instance, class LinkedList with
instance variable LinkedList next and a sequent which says that obj.next is not
null. When obj.next is now queried, its value will be a symbolic object. Since
the value is not null we can query obj.next.next. But this time, the sequent says
nothing about obj.next.next, consequently it could be null or not. In case it is
not null, the query obj.next.next.next can be asked, etc. To avoid states with
unbounded depth, the symbolic execution engine returns simply <unknown value>
in case a field is not mentioned in the queried sequent.

Defining the current state by visible variables offers a view related to the source
code. Alternatively, the current state could be defined as all locations and objects
contained in the update (ignoring visibility). This offers a view related to verification
with JavaDL.
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11.4.7 Controlled Execution

A proof strategy not only decides which rule is applied next, but also selects the
branch on which the next rule is applied and it decides when to stop rule application.
The strategy used for verification performs a depth first proof search. It applies rules
on one branch until it is closed or no more rules are applicable. It continues then with
another branch in the same way until the whole proof is closed or a preset maximal
number of rule applications is reached.

This behavior is not suitable for symbolic execution because a single path may
never terminate. Instead, the symbolic execution strategy applies rules on a branch
as long as the next rule application would generate a new symbolic execution tree
node. Before that rule is applied, the strategy continues on another branch. When
the next rule on all branches would cause a new symbolic execution tree node, the
cycle starts over on the first branch. This ensures that one symbolic execution step
at a time is performed on all branches. A preset number m of maximally executed
symbolic execution tree nodes per branch is used as a stop condition in case that a
symbolic execution tree has an unbounded depth.

If m is set to one, this corresponds to a step into instruction in an interactive
debugger. A step over can be realized by stopping when a node with the same
or lower stack trace size than the current one is encountered. The instruction step
return is even more strict and requires that the stack trace size is indeed lower. More
advanced stop conditions are available for each supported breakpoint type (e.g., line
or exceptional breakpoints).

11.4.8 Memory Layouts

Aliased references do not necessarily result in different execution paths. One single
symbolic execution path can represent many concrete execution paths with differ-
ently aliased references, corresponding to different data structures in memory. The
symbolic execution engine allows one to compute for each node in the symbolic
execution tree all possible aliasing structures and the resulting data structures in
memory. Each equivalence class of variables referring to the same object, together
with the resulting memory structure, is named a memory layout.

Memory layouts can be computed for the current state as well as for the initial
state where the current computation started. The first step in doing this is to compute
all possible equivalence classes of the current state. Based on this, it is then possible
to compute the specific values resulting in the memory structure.

To compute the equivalence classes, the used objects occurring in the current
sequent must be known. These are all terms with a reference type, meaning that they
represent an object in Java, except those objects created during symbolic execution,
and the variable exc in the proof obligation (11.4.1). Symbolic states U in KeY
explicitly list objects created during symbolic execution, so they can be easily filtered
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out. The constant null is also added to the used objects because we want to check
whether an object can be null.

After the used objects are identified, a side proof checks which of them can be
aliases. The initial proof obligation is simply the current context knowledge

G =) D

where G and D are all first-order top-level formulas of the original sequent.
For each possible combination of two used objects o1 and o2 (ignoring symmetry),

first a case distinction on Uroot(o1
.
= o2) is applied to all open goals of the side proof,

then the automatic proof strategy is started. The updates Uroot of the proof tree root
is considered because it backups the initial state and thus provide additional equality
constraints.

This will close all branches representing impossible equivalence classes. The
branch conditions from the case distinctions on each open branch of the side proof
represent the equivalence classes of a memory layout m. The symbolic values of
variables var1, . . . ,varn can be queried as shown in Section 11.4.6, but with the
slightly modified initial sequent G ,cbc =) U ResultPredicate(var1, . . . ,varn),D ,
where cbc is the conjunction of the branch conditions from case distinctions on the
path specifying m. As the case distinctions were exhaustive on all used objects, only
a single value can be computed from this query. The side proof can be based either
on the current node or on the root of the proof to inspect how the memory was before
symbolic execution started.

The symbolic execution API does not query field by field to compute the full data
structures of the memory. Instead, all variables used in the sequent are queried at
once, which is achieved by adding them as parameters var1, . . . ,varn to predicate
ResultPredicate.

11.5 Conclusion And Future Work

Recent years witnessed a renewed dynamics in research devoted to debugging. To
a considerable degree this is based on breakthroughs in static analysis of software,
see [Ayewah et al., 2008]. The book by Zeller [2006] presents a systematic approach
to debugging and an overview of currently developed and researched debugging
techniques.

The Symbolic Execution Debugger is the first debugging tool that is (a) based
on symbolic execution and first-order automated deduction, (b) visualizes complex
control and data structures, including reference types, (c) can render unbounded loops
and method calls with the help of specifications, and (d) is seamlessly integrated into
a mainstream IDE (Eclipse). Other tools have capabilities (b) and (d), but to the best
of our knowledge, the SED is the first tool to realize (a) and (c). A prototype of the
SED was presented by Hähnle et al. [2010], however, it lacked (c).
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The SED can also be used as alternative GUI for the KeY prover. It is possible to
use the SED for formal verification (see Section 11.3.6) and in addition to switch
into interactive mode when KeY’s proof strategy was not powerful enough to close a
goal automatically. The advantages are obvious: the SED-like interface for the KeY
prover inherits properties (b) and (d) from above. In addition it is not only attractive
to software developers unfamiliar with formal methods, but it also constitutes a
continuous transition from the world of software developers into the world of formal
verification.

In future work we plan to develop the SED further into a software analysis tool
that supports code reviews, as pioneered by Fagan [1976]. For this it is necessary to
increase the coverage of Java beyond what is currently supported by the KeY verifier.
The most important gaps are floating-point types and concurrent programs. Both
areas constitute open research problems for formal verification, however, it is not at
all unrealistic to implement support of these features in the context of debugging.
The reason is that for debugging purposes often an approximation of the program
semantics is already useful. For example, floating-point types might be approximated
by fixed point representations or by confidence intervals, whereas symbolic execution
of multithreaded Java would simply concentrate on the thread from which execution
is started.


