
Chapter 1
Quo Vadis Formal Verification?

Reiner Hähnle

The KeY system has been developed for over a decade. During this time, the field of
Formal Methods as well as Computer Science in general has changed considerably.
Based on an analysis of this trajectory of changes we argue why, after all these years,
the project is still relevant and what the challenges in the coming years might be. At
the same time we give a brief overview of the various tools based on KeY technology
and explain their architecture.

1.1 What KeY Is

There is the KeY project, the KeY system, and a collection of software productivity
tools based on the KeY system that we call the KeY framework (see Figure 1.1
below).

The KeY project is a long-term research project started in 1998 by Reiner Hähnle,
Wolfram Menzel, and Peter Schmitt at University of Karlsruhe (now Karlsruhe
Institute of Technology). After Menzel’s retirement Bernhard Beckert joined the
project leader team which has been unchanged ever since. This proves that long-term
research on fundamental problems is possible—despite dramatic changes in the aca-
demic funding landscape—provided that the people involved think it is worthwhile.
The question is: why should they think it is?

From the very first publication [Hähnle et al., 1998] the aim of the KeY project
was to integrate formal software analysis methods, such as formal specification and
formal verification, into the realm of mainstream software development. This has
always been—and still is—a very ambitious goal that takes a long-time perspective
to realize. In the following we argue why we are still optimistic that it can be reached.

The KeY system was originally a formal verification tool for the Java program-
ming language, to be coupled with a UML-based design tool. Semantic constraints
expressed in the Object Constraint Language (OCL) [Warmer and Kleppe, 1999]
were intended as a common property specification language. This approach had to
be abandoned, because UML and OCL never reached a level of semantic foundation

1



2 1 Quo Vadis Formal Verification?

that was sufficiently rigorous for formal verification [Baar, 2003]. In addition, OCL
is not an object-oriented language and the attempt to formally specify the behavior
of Java programs yields clumsy results.

To formally specify Java programs KeY currently uses the result of another long-
term project: the Java Modeling Language (JML) [Leavens et al., 2013] which enjoys
wide acceptance in the formal methods and programming languages communities.

From the mid 2000s onward, a number of application scenarios for deductive
verification technology beyond functional verification have been realized on the basis
of the KeY system. These include test case generation, an innovative debugging tool,
a teaching tool for Hoare logic, and an Eclipse extension that integrates functional
verification with mainstream software development tools. Even though they share the
same code base, these tools are packaged separately to cater for the different needs
of their prospective users.

1.2 Challenges To Formal Verification

First, let us clarify that in this book we are concerned with formal software verifica-
tion. With this we mean a formal, even mechanical argument, typically expressed in
a formal logical system, that a given program satisfies a given property which also
had been formalized. In contrast to this, most software engineers associate heuristic,
informal techniques such as testing or code reviews with the term “verification”
[Sommerville, 2015, Chapter 8].

Formal verification of nontrivial programs is tedious and error-prone. Therefore,
it is normally supported by tools which might be dedicated verification tools, such as
KeY, or general purpose interactive theorem provers such as Isabelle [Nipkow et al.,
2002] or Coq [Dowek et al., 1993]. One can further distinguish between interactive
tools where a verification proof is built in dialogue with a human user and tools
that work in “batch mode,” not unlike a compiler, where a program is incrementally
annotated with specifications and hints until its correctness can be automatically
proven. Examples of the latter are the systems Dafny [Leino, 2010] and VeriFast
[Jacobs and Piessens, 2008]. A full discussion of possible architectures of verification
systems, as well as their pros and cons, is found in the survey [Beckert and Hähnle,
2014].

For a long time the term formal verification was almost synonymous with func-
tional verification. In the last years it became more and more clear that full functional
verification is an elusive goal for almost all application scenarios. Ironically, this
happened because of advances in verification technology: with the advent of verifiers,
such as KeY, that mostly cover and precisely model industrial languages and that
can handle realistic systems, it finally became obvious just how difficult and time
consuming the specification of functionality of real systems is. Not verification but
specification is the real bottleneck in functional verification [Baumann et al., 2012].
This becomes also very clear from the case studies in Chapters 18 and 19.



1.2. Challenges To Formal Verification 3

Even though formal verification of industrial target languages made considerable
progress, complete coverage of languages such as Java, Scala, or C++ in any formal
verification tool is still a significant challenge. The KeY tool, while fully covering
Java Card (see Chapter 10), makes similar restrictions to most other verification tools:
floating-point types are not supported, programs are assumed to be sequential, and
generic types are expected to have been compiled away. On the other hand, Java
integer types, exceptions and static initialization all are faithfully modeled in KeY.

Some of the restrictions will be, at least partially, addressed in the future. First
approaches to formal verification of concurrent Java have been presented [Amighi
et al., 2012] and are on their way into KeY [Mostowski, 2015]. On the other hand, to
the best of my knowledge, all existing formalizations of Java concurrency assume
sequential consistency. A full formalization of the Java memory model seems far
away at this moment.

Floating-point types seem a more achievable goal, because formal models of the
IEEE floating-point standard are available today [Yu, 2013] and it is only a matter of
time until they are supported in verification tools. A more difficult question, however,
appears to be how to formally specify floating-point programs.

A major challenge for all formal verification approaches, most of which are part
of academic research projects, is the evolution of industrial languages such as Java.
This evolution takes place at a too fast pace for academic projects with their limited
resources to catch up quickly. Moreover, the design of new language features takes
into account such qualities as usability, marketability, or performance, but never
verifiability. Many recent additions to Java, for example, lambda expressions, pose
considerable challenges to formal verification. Many others, while they would be
straightforward to realize, do not yield any academic gain, i.e., publishable papers.
This results in a considerable gap between the language supported by a verification
tool and its latest version. KeY, for example, reflects mostly Java 1.5, while the latest
Java version at the time of writing this article is 1.8.

A problem of a somewhat different kind constitute the vast APIs of contemporary
programming languages. The API of a language is among its greatest assets, because
it is the basis of programmer productivity, but it presents a major problem for program
analysis: in general neither the source code of an API method is available nor a formal
contract describing its behavior. For special cases like Java Card [Mostowski, 2007]
or for specific aspects such as concurrency [Amighi et al., 2014b] it is possible to
provide formal specifications of API classes, however, in general the usage of APIs
poses a serious problem for program analysis. To be fair, though, this is the case not
only in formal verification, but already for test case generation or much simpler static
analyses. That formal verification of APIs is, in principle, feasible shows the recent
complete verification of Eiffel’s container library [Polikarpova et al., 2015].

The preceding discussion gives a somewhat mixed prospect for formal verification
of functional properties of Java. So, why do we carry on with KeY? As a matter
of fact, we believe that there are many good reasons and one can even argue that
deductive verification is just beginning to become an interesting technology (see also
[Beckert and Hähnle, 2014]). Let us see why.



4 1 Quo Vadis Formal Verification?

1.3 Roles of Deductive Verification

A central insight from the last decade or so is that deductive verification technology
is not only useful for functional verification, but is applicable to a large number
of further scenarios, many of which avoid the problems discussed in the previous
section.

1.3.1 Avoid the Need for Formal Specification

If full-fledged functional verification is no longer the main focus, but deductive
verification technology is used for analyses that do not require to compare a program
against its functionality, then the problem of providing formal specifications is at
least alleviated or even vanishes completely.

For example, it is very useful to know that a program does not throw any runtime
exceptions, that it terminates, or that it only accesses a certain part of the heap. Such
generic properties can be specified in a uniform manner for a given program. In
the last years a number of specialized verification tools appeared for this class of
problems that scale up to real-world problems [Beyer, 2015]. Note, however, that it
might still be necessary to provide detailed specifications in order to avoid too many
false positives.

Closely related is the problem of resource analysis, where the best-case or worst-
case consumption for a target program of a given resource is computed. Analyzed
resources include runtime and memory, but also bandwidth or the number of parallel
threads. Cost analysis tools involve complex constraint solving and typically do
not include a formal semantics of the target language. Therefore, the question of
soundness arises. In this context, verification tools such as KeY were successfully
employed as “proof checkers” [Albert et al., 2012]. This is possible, because the
resource analyzer can infer enough annotations (such as the invariants) required for
automating the verification process and because resource properties can be expressed
in a uniform manner.

About ten years ago, several research groups independently proposed to generate
glass-box test cases with code coverage guarantees by symbolic execution of the
program under test [Tillmann and Schulte, 2005, Engel and Hähnle, 2007, Albert
et al., 2009].1 In Chapter 12 we describe how test cases can be obtained from
a verification attempt in KeY. The embedding into a deductive framework has a
number of advantages over using symbolic execution alone:

• full first-order simplification can eliminate unreachable code and hence irrelevant
test cases, in particular, when combined with preconditions;

• with suitable loop invariants and contracts even programs with loops and recur-
sive programs can be fully symbolically executed, thus increasing coverage;

1 None of them had realized at the time that this idea had in essence been already suggested by King
[1976].



1.3. Roles of Deductive Verification 5

• test oracles can be specified declaratively and can be implemented by deductive
inference.

Yet another application of deductive verification that can dispense with detailed
specifications are relational properties. Relational properties became increasingly
important as an application scenario for verification in recent years. They compare
the behavior of two or more programs when run with identical inputs. The crucial
point is that it is not necessary to fully specify the behavior of the target programs, but
only compare their respective behaviors and ensure they maintain a certain relation
(e.g., bisimilarity). That relation is typically fixed and can be expressed in a uniform
manner for all given target programs. Therefore, the specification can either be
written once and for all or at least it can be computed automatically. This observation
was used, for example, by Benton [2004] to formalize program properties and the
soundness of program transformations in relational Hoare logic.

Examples of relational properties include information flow [Darvas et al., 2003,
2005], where the property to be proven takes the form of a security policy; another
is the correctness of compiler optimizations [Barthe et al., 2013a] and program
transformations [Ji et al., 2013] where it must be shown that the original and the
compiled/transformed program behave identically on all observable outputs. These
scenarios are supported by KeY and are discussed in Chapters 13 and 14, respectively,
in this book.

What makes relational properties attractive as an application of verification tech-
nology, besides the fact that extensive specifications are not needed, is the high
degree of automation that is achievable. The main obstacle against automation is the
need to provide suitable specification annotations in the form of loop invariants (or
contracts in the case of recursive calls). To prove relational properties, the required
invariants are often simple enough to be inferred automatically. In KeY a combination
of symbolic execution and abstract interpretation proved to be effective [Do et al.,
2016]. How this works is explained in Chapter 6.

Uniform specifications and simple invariants contribute towards automation in
another crucial way: the resulting proof obligations tend not to require complex quan-
tifier instantiations. Given sufficient support for reasoning over theories that occur
in the target program, full automation is achievable for many relational problems.
Chapter 5 explains by selected examples how theory reasoning has been integrated
into the deduction machinery of KeY.

1.3.2 Restricted Target Language

In Section 1.2 we pointed out that real-world languages, such as Java, C++, or Scala
with their vast scope, their idiosyncrasies and the dynamics of their development
pose significant challenges to formal verification. One obvious reaction to this is to
focus on programming languages that are smaller and less prone to change. Examples
include Java Card [JavaCardRTE], a Java dialect for small, mobile devices, Real-Time
Java [Bollella and Gosling, 2000], and SPARK [Jennings, 2009], an Ada dialect for



6 1 Quo Vadis Formal Verification?

safety-critical software. For these languages complete formalizations, including their
APIs exist. In KeY we support Java Card (see [Mostowski, 2007] and Chapter 10)
and Real-Time Java [Ahrendt et al., 2012].

A different approach is to design a modeling language that retains the essential
properties of the underlying implementation language, but abstracts away from some
of its complexities. Verification of abstract models of the actual system is standard in
model checking [Clarke et al., 1999]; PROMELA [Holzmann, 2003], for example,
is a widely used modeling language for distributed systems. In the realm of object-
oriented programming with concurrency the language ABS (for Abstract Behavioral
Specification) [Johnsen et al., 2011] was recently suggested as an abstraction for
languages such as Java, Scala, C++, or Erlang, several of which it supports with code
generator backends. ABS has a concurrency model based on cooperative scheduling
that permits compositional verification of concurrent programs [Din, 2014]. It also
enforces strong encapsulation, programming to interfaces, and features abstract data
types and a functional sublanguage. This allows a number of scalable analyses tools,
including resource analysis, deadlock analysis, test generation, as well as formal
verification [Wong et al., 2012]. A version of KeY that supports ABS is available
[Chang Din et al., 2015].

The formal verification system KeYmaera2 [Platzer and Quesel, 2008, Fulton et al.,
2015] targets a modeling language that combines an abstract, imperative language
with continuous state transitions that are specified by partial differential equations. It
can be used to formally specify and verify complex functional properties of realistic
hybrid systems [Loos et al., 2013] that cannot be expressed in model checking tools.

1.3.3 Formal Verification in Teaching

One important application area of formal verification is education in formal ap-
proaches to software development. Here the coverage of the target language and of
the APIs are not a critical issue, because the teacher can avoid features that are not
supported and is able to supply specifications of the required APIs.

On the other hand, different issues are of central importance when deductive
verification systems are used in teaching. The main challenge in teaching formal
methods is to convey to students that the learning outcomes are useful and worthwhile.
Students should not be force-fed with a formal methods course they find to be
frustrating or irrelevant. This puts high demands on the usability and the degree
of automation in the used tools. It is also crucial to present the course material in
a manner that connects formal verification with relevant every-day problems that
one has to solve as a developer. Finally, one has to take care that not too many
mathematical prerequisites are needed.

Since 2004 we use the KeY system in a variety of mandatory and specialized
courses, where we try to address the issues raised in the previous paragraph. In

2 KeYmaera branched off from KeY, see also Section 1.5.1.



1.3. Roles of Deductive Verification 7

2007 we created a B.Sc. level course called Testing, Debugging, and Verification
[Ahrendt et al., 2009a] where we present formal specification and verification as part
of a continuous spectrum of software quality measures. This being a B.Sc. course,
we wanted to illustrate formal verification in Hoare style [Hoare, 1969], and with
a simple while-language, not Java. To our amazement, we could not find any tool
support with automatic discharge of first-order verification conditions (after all, we
did not want to include automated theorem proving in our course as well!). Therefore,
we decided to create a version of the KeY system that combines forward symbolic
execution with axiomatic reasoning on a while-language with automatic first-order
simplification [Hähnle and Bubel, 2008]. Incidentally, when we were looking for
examples for our course to be done with KeY Hoare, we found that a large number
of Hoare logic derivations published in lectures notes and text books are slightly
wrong: forgotten preconditions, too weak invariants, etc. This is practically inevitable
when formal verification is attempted by hand and demonstrates that tool support is
absolutely essential in a formal methods course. The KeY Hoare tool is discussed
in this book in Chapter 17. The aforementioned course is currently still taught at
Chalmers University3 (with KeY having been replaced by Dafny [Leino, 2010]).

Another course worth mentioning is called Software Engineering using Formal
Methods. It was created in 2004 by the author of this chapter, initially conceived as a
first year computer science M.Sc. course and it is still being taught4 in this fashion
at Chalmers University and elsewhere. The course introduces model checking with
PROMELA and SPIN [Holzmann, 2003] in its first part and functional verification of
Java with KeY in the second. It is a mix between theoretical foundations and hands-on
experimentation. By 2012 KeY was considered to be stable and usable enough (SPIN
had reached that state over a decade earlier) to design a somewhat stripped down
version of the course for 2nd year B.Sc. students. Since Fall 2012 that course is
compulsory for Computer Science majors at TU Darmstadt and taught annually to
250–300 students.5 The response of the students is on the whole encouraging and
evaluation results are in the upper segment of compulsory courses. Other versions of
the course, based on material supplied by the KeY team, are or were taught at CMU,
Polytechnic University of Madrid, University of Rennes, University of Iowa, RISC
Linz, to name a few.

What this shows is that formal verification can be successfully taught even in
large classes and to students without a strong background or interest in mathematics.
The user interface of the KeY system, in particular its GUI, plays a major role
here. Another important issue is ease of installation: KeY installs via Java webstart
technology on most computers with only one click.6 In this context it cannot be
overestimated how important usability and stability are for user acceptance. Students
later become professionals and are the prospective users of our technology. Their
feedback has been taken very seriously in the development of KeY. In fact, the results

3 www.cse.chalmers.se/edu/course/TDA567
4 www.cse.chalmers.se/edu/course/TDA293
5 www.se.informatik.tu-darmstadt.de/teaching/courses/formale-methoden-im-softwareentwurf
6 If you want to try it out right now, jump to Section 15.2 to see how.



8 1 Quo Vadis Formal Verification?

of systematic usability studies done with KeY [Beckert and Grebing, 2012, Hentschel
et al., 2016] are reflected in the design of its user interface. KeY’s user interface and
its various features are explained in Chapter 15. A systematic tutorial to get you
started with the verification of actual Java programs is found in Chapter 16.

1.3.4 Avoid the Need for Fully Specified Formal Semantics

There is one application scenario for deductive verification technology that not only
dispenses with the need for formal specification, but does not even require any prior
knowledge in formal methods and does not necessarily rest on a full axiomatization
of all target language constructs. First experiments with a prototype of an interactive
debugger based on KeY’s symbolic execution engine [Hähnle et al., 2010] resulted in
a dedicated, mature tool called Symbolic Execution Debugger (SED) [Hentschel et al.,
2014a]. It offers all the functionality of a typical Java debugger, but in addition, it can
explore all symbolic execution paths through a given program, which it visualizes
as a tree. Full exploration of all paths is possible, because the SED can handle loop
invariants and method contracts. Also the symbolic environment and heap at each
execution step can be visualized. The SED is realized as an Eclipse extension and
is as easy to use as the standard Java debugger of Eclipse. The SED is explained in
Chapter 11.

In the future we plan to support concurrent Java programs in the SED and programs
with floating-point types, both of which are not axiomatized in KeY’s program logic.
But for the purpose of debugging and visualization this is also not really necessary. To
debug concurrent programs it is already useful to concentrate on one thread—this is
what debuggers normally do. The underlying verification machinery of KeY can give
additional hints that go beyond the capabilities of standard debuggers, for example,
which values might have been changed by other threads.

Floating-point data can be represented simply by symbolic terms that contain the
operations performed to obtain a current value. As floating-point operations raise no
ArithmeticExcpetion besides “divide by zero,” they do not create control flow
that is not represented already in a symbolic execution tree over integer types. Of
course, a symbolic execution tree over “uninterpreted” floating-point terms may
contain infeasible paths. But this could be detected by test case generation.

1.3.5 Where Are We Now?

Where does deductive verification with KeY stand at this moment? What about our
original goal to bring formal verification into the realm of mainstream software
development? I believe we are on the right track: with the Symbolic Execution
Debugger, with the Eclipse integration of KeY, and with mostly automatic tools
such as test case generation. Other research groups are also working towards the



1.3. Roles of Deductive Verification 9

general goal, even though by different means: several test case generation tools
based on symbolic execution are commercially used; a static analysis tool using
deduction is part of Microsoft’s developer tools, a termination analyzer will soon
follow; the Spec# programming system includes a verifier and bug finding tool for
the C# programming language.

As explained in Section 1.3.1 above, deductive verification technology is also a
base technology for security analysis, sound compilation and program transformation,
resource analysis and, in the future, to regression test generation, fault propagation
as well as possibly other scenarios. We predict that in ten years from now, deductive
verification will be the underlying technology, largely invisible to the end-user,
in a wide range of software productivity products used in different phases of the
development chain.

But what about functional verification—the supposed gold standard? Routine
functional specification and formal verification is possible—for restricted languages
such as Java Card or SPARK that can be fully formalized, or for languages such as
ABS that have been developed with verifiability in mind. Partial functional verifica-
tion of medium-sized, real C programs is possible [Alkassar et al., 2010, Klein et al.,
2010]—with huge effort and with limited reusability. Most importantly, functional
verification of complex Java library methods is possible, provided that they fall into
Java fragments covered by verification tools: with the help of KeY we found a subtle
bug in the default sorting method of Java (as well as Python, Haskell, and several
other programming languages and frameworks) and we showed that our fix actually
eliminates the bug [De Gouw et al., 2015]. The proof required over two million steps
and an effort of several person weeks.

A central limitation of all approaches to functional verification so far is their
brittleness in the presence of evolution of the verification target: any change to the
program under verification may necessitate to redo a large amount of the verification
effort already spent. Even though first approaches to alleviate this problem have been
presented [Bubel et al., 2014b], it is far from being solved.

For the reasons spelled out above, we expect that functional verification of ex-
ecutable source code remains a niche application of deductive verification in the
foreseeable future, suitable for safety-critical software, where restricted program-
ming languages are acceptable and changes to the verification target are carefully
controlled. Another area where formal verification will become widely used are
model-centric approaches, where verification of a software model is combined with
code generation. The latter is particularly interesting for industry, where model-driven
development approaches have been well received.

But then, who knows? Probably, the world (of verification) will have changed
again, when we prepare the third edition of the KeY book in 2025 or so. Already
now we see that the view on deductive verification of software became much more
differentiated than it was at the start of the KeY project. The question is no longer
whether deductive verification is useful, but how to make best use of it. These are
exciting times to work with Formal Methods in Software Engineering!



10 1 Quo Vadis Formal Verification?

1.4 The Architecture of KeY

We emphasize that KeY is an integrated, standalone system that doesn’t need any
external components to function. This is in contrast to, for example, verification
condition generators such as Dafny [Leino, 2010] that are part of a tool chain (in
Dafny’s case Boogie [Barnett et al., 2006] and various SMT solvers). Nevertheless,
KeY can be advantageously integrated with other deduction and software productivity
tools, as we shall see.

1.4.1 Prover Core

How does the architectureof KeY support the extended application scenarios of
deductive verification sketched above? Let us start at the core. Here we find a
pretty standard sequent or Gentzen calculus: a set of schematic rules that manipulate
structured implications, called sequents, of the form

j1, . . . ,jm =) y1, . . . ,yn

where 0  m, 0  n and the ji, y j are formulas. The semantics of sequents is that the
meaning formula of the sequent, i.e., the universal closure of the formula

Vm
i=1 ji !Wn

j=1 j j, is valid in all models. This setup is a standard choice for many interactive
theorem provers [Balser et al., 2000, Nipkow et al., 2002].

A specific choice of KeY, however, is that formulas ji are from a program logic
that includes correctness modalities over actual Java source code fragments. Before
we come to that, let us note some important design decisions in KeY’s logic. First of
all, the program logic of KeY is an extension of typed first-order classical logic. All
KeY formulas that fall into its first-order fragment are evaluated relative to classical
model semantics and all sequent rules over first-order formulas are classically sound
and complete. In particular, we assume that all structural sequent rules are valid
so that associativity, order, and multiplicity of formulas occurring in sequents are
irrelevant. The first-order fragment of KeY’s logic and its calculus is explained in
detail in Chapter 2. Figure 2.1, for example, lists the rules for classical connectives
and quantifiers.

A central design issue for any interactive verifier is how the rules of its calculus
are composed into proofs. Here we come to a second peculiarity of KeY that sets
it apart from most other systems: the rule set is parametric to the system and can
be arbitrarily chosen during initialization. Many verifiers let the system user build
new rules from existing ones with the help of meta-rules, so-called tactics [Gordon
et al., 1979] with the restriction that only rules whose validity can be proven inside
the system are available [Nipkow et al., 2002, Paulin-Mohring, 2012]. This requires
some form of higher-order logic. The main advantage is that soundness of the rule
base can be reduced to a small set of trusted axioms, for example, those of set theory
in the case of Isabelle/HOL [Nipkow et al., 2002].



1.4. The Architecture of KeY 11

In KeY we decided to follow a different path and trade off a small trusted foun-
dation for more flexibility and a less steep learning curve for users of the system.
Schematic sequent rules in KeY are specified as so-called taclets [Beckert et al.,
2004]. They contain the declarative, logical content of the rule schemata, but also
pragmatic information: in which context and when a rule should be applied by an
automated reasoning strategy and how it is to be presented to the user. Taclets consti-
tute in essence a tiny domain-specific language for typed, first-order schematic rules.
This is explained in detail in Chapter 4. At the core of the KeY system is an efficient
interpreter that applies taclets to goal sequents and thereby constructs proof trees. It
is called KeY Prover in Figure 1.1.

The language of taclets and the KeY Prover are intentionally restricted for ef-
ficiency reasons: for example, taclets always have exactly one main formula of a
sequent in focus that can be manipulated and automated proof search does not imple-
ment backtracking (though proofs can be pruned interactively). As a consequence,
one cannot describe most calculi for modal and substructural logics [D’Agostino
et al., 1999] with taclets; one could represent a calculus for intuitionistic logic, but
not automated proof search in it, etc. In other words, taclets are optimized for their
main use case: automated proof search in typed first-order logic and logic-based
symbolic execution in JavaDL.

KeY Framework

KeY System

Ke
Y

H
oa

re

Symbolic Execution API

Ke
Y

Te
st

G
en

SED Integration

Eclipse Integration

KeY GUI

Translator

PO Type

KeY Prover

Rule Set
JavaDL PO

Java + JML

.key, .proof

Figure 1.1 Architecture of the KeY tool set

Taclets provide the kind of flexibility we need for the various application scenarios
in KeY: there are different rule sets tailored to functional verification, to information
flow analysis, etc. Moreover, taclets dispense with the need to support higher-order
quantification in the logic. This makes interaction with the prover easier, both for
humans and with other programs: for example, as first-order logic is taught in
introductory courses on discrete math, it is possible to expose second-year B.Sc.
students to KeY in a compulsory course at Technische Universität Darmstadt (see
Section 1.3.3). But also the proximity of modeling languages such as JML and of



12 1 Quo Vadis Formal Verification?

the language of SMT solvers [Barrett et al., 2010] to typed first-order logic make it
simple to import and export formulas from KeY’s program logic. On the one hand,
this makes it possible to have JML-annotated Java as an input language of KeY, on
the other hand, using SMT solvers as a backend increases the degree of automation.

An important question is how to ensure soundness of the more than 1,500 taclets
loaded in a standard configuration of KeY. Many of them are first-order rewrite rules
and have been proven to be sound in KeY itself relative to the few rules given in
Chapter 2. Rules that manipulate programs, however, can in general not be validated
in KeY’s first-order logic. Instead, soundness of a large part of the rules dealing
with programs has been proven against a formal semantics of Java external to KeY
[Ahrendt et al., 2005]. That paper, as well as Section 3.5.3, discusses the pros and
cons of KeY’s taclet approach versus the foundational approach implemented in
higher-order logic proof assistants.

1.4.2 Reasoning About Programs

The program logic of KeY contains “correctness formulas” of the form [p]j , where p
is an executable fragment of a Java program and j a formula that may in turn contain
correctness formulas. This means that Java programs occur directly inside sequents
and are neither encoded nor abstracted. Informally, the meaning of the formula above
is that when started in an arbitrary state, if the program p terminates, then in its final
state j holds. The formula [p]j relates the initial and the final state of the program p,
i.e., its big step semantics [[p]]. Therefore, the [·]· operator can be seen as an (infinite)
family of modal connectives, indexed by p.

Program formulas are closed under propositional connectives and first-order
quantification, therefore, it is directly possible to express a Hoare triple of the form
{q}p{j} in KeY as q ! [p]j . The resulting logic is known as dynamic logic and
due to Pratt [1977]. Dynamic logic is more expressive than Hoare logic, because it
allows one to characterize, for example, program equivalence. A deepened discussion
of dynamic logic is contained in [Harel et al., 2000] and Chapter 3. As the programs
occurring in our correctness formulas are Java programs, the logic used by KeY is
called Java Dynamic Logic, JavaDL for short.

It is possible to design proof rules for JavaDL that analyze formulas of the
form [p;w]j , where p is a single Java statement and w the remaining (possibly
empty) program. For example, p might be a simple assignment of the form x=e,
where x is an int variable and e a simple int expression. Chapter 3 discusses rules
that reduce such a program to a statement about the remaining program [w]j plus
first-order verification conditions. Other rules decompose complex Java statements
into simple ones. The rules for program formulas in KeY are designed in such
a way that they constitute a symbolic execution engine for Java. Together with an
induction principle (in KeY: loop invariants), symbolic execution becomes a complete
verification method [Burstall, 1974, Heisel et al., 1987]: Any valid program formula,
for example, n � i ! [while (i<n) {i++};]i .

= n can be syntactically reduced



1.4. The Architecture of KeY 13

to a finite set of valid first-order formulas with arithmetic. In contrast to model
checking, it is neither necessary to abstract the target program, nor can spurious
counter examples occur. The price is, of course, that Java programs must be annotated
with suitable specifications, including loop invariants. In addition, some quantifier
instantiations might not be found automatically, but must be supplied by the user.
This requires a certain amount of expertise, at least if KeY is used for functional
verification.

While (logic-based) symbolic execution plus invariant reasoning is, in principle,
sufficient to formally verify programs, it is not feasible to verify anything but toy
programs without a modularization principle, because the number of branches in a
symbolic execution tree grows exponentially with the number of decision conditions
in a program. For an imperative, object-oriented language such as Java the most
common approach to decompose its verification problem into chunks of manageable
size is to provide for each method implementation a declarative specification of its
behavior in the form of a contract. The idea is that a method call is replaced by the
contract which the implementer of the method promises to honor. Thus the caller of
a method is the contract’s client and the callee is its supplier. This idea goes back
to Meyer [1992] who propagated it as design-by-contract and implemented a runtime
assertion checker in the Eiffel language, but did not use contracts for the purpose of
verification. Contracts became also part of the OCL [Warmer and Kleppe, 1999] and
in this form were implemented in KeY [Ahrendt et al., 2000].

JML introduced contracts systematically to the Java language; a method contract
consists of three parts: a precondition specifies when the callee considers the contract
to be applicable; a postcondition specifies what the callee promises to guarantee
in the final state after it returns; finally, an assignable clause records the program
locations that might have been changed during the execution. Many of the examples
in the JML specification and tutorials [Leavens et al., 2013] are geared towards the
use of JML in runtime verification. For this reason we found it useful to include
Chapter 7 in this book that explains in detail how JML can be used to formally
specify functional correctness of Java programs. It can be read with benefit even if
one is not interested in KeY and simply wants to learn about formal specification of
object-oriented programs.

While contracts provide a natural and effective way to reason about a program
by looking at one method at a time, there are two serious challenges in practice:
the first is technical and is related to the question of how to specify succinctly the
state change effected by a method execution. For example, assignable clauses in
practice are not static, but depend on the symbolic heap at call time. There are several
technical solutions to this problem, including ownership types [Clarke et al., 1998]
and dynamic frames [Kassios, 2006]. The approach of KeY is a variation of the
latter and discussed in Chapter 9. The second challenge is to come up with suitable
contracts in the first place. As pointed out above this is, at least partially, still an open
research issue.



14 1 Quo Vadis Formal Verification?

1.4.3 Proof Obligations

A minimal input file of a verification task for KeY might look as simple as this:

KeY
\problem{

\[{ ... a Java program ... }\] j
}

KeY

The system will offer the user to prove validity of the formula given as the problem
specification, i.e., partial correctness of the given Java program with respect to the
postcondition j (the square brackets are rendered in ASCII as \[, \]). How this
is done is explained in detail in Chapter 15. It is possible to load such a file with
the extension .key directly into the prover (see Figure 1.1). In most cases, however,
the JavaDL formula to be proven is the result of a translation and a selection of a
specific proof obligation. Consider the following snippet from a .java file with JML
annotations:

Java + JML
class C {

/*@ invariant i; @*/
...
/*@

@ requires q;
@ ensures j;
@*/

void m(Object o) { ... method body ... }
...

}
Java + JML

At first glance, this looks similar to the .key file above. But there might be many
methods declared in it as well as class invariants. One of them has to be selected. And
then what to prove? That a selected method satisfies its contract? That the contract is
well-defined? But it is also possible to prove nonfunctional properties about a given
program (see Section 1.3.1), such as secure information flow (see Chapter 13) and
correctness of program transformations (see Chapter 14).

So for each given .java file there are a plethora of different proof obligations
(PO) one might want to look at. It is necessary to first select one of them and
then to translate it into JavaDL. This translation is far from trivial: the Java name
space must be flattened into a first-order signature, default assumptions of JML (for
example, o!=null above) must be ensured, well-formedness of the heap and default
values must be assumed. Implicit declarations in Java, such as default constructors or
“extends Object” must be made explicit, etc. The translation of JML (or, rather,
the KeY-specific extension of JML) to JavaDL and the generation of various proof
obligations is a fully automatic process and explained in Chapter 8.



1.4. The Architecture of KeY 15

1.4.4 The Frontends

When you download, install, and start up the KeY system you will see its graphical
user interface (GUI), see Figure 1.2. This is the standard frontend of the KeY system.
The KeY GUI is a stand-alone Java application. Its usage scenario is to perform
functional verification of JML-annotated Java programs. Upon loading a .java
file the proof obligation selector is launched and selected POs are automatically
translated into JavaDL.

Figure 1.2 GUI of the KeY system with a loaded proof obligation

The test case generation tool, discussed in Chapter 12, is integrated into the
KeY GUI (and into the Eclipse GUI, see below), but test case generation typically
requires much less user interaction than functional verification. On the other hand,
the generated test cases need to be connected to JUNIT (see junit.org) or other unit
test frameworks to be executed and managed.

For some of the application scenarios of deductive verification discussed in
Section 1.2 the KeY GUI is not suitable. The various tools based on the KeY system
also address a variety of different user communities. Therefore, they are packaged
separately from the KeY system and provide alternative frontends.

The teaching tool KeY Hoare is a stripped down version of the KeY system that
lets students perform formal verification exercises on a simple while-language and
provides a Hoare logic-like view of JavaDL proofs [Hähnle and Bubel, 2008]. KeY
Hoare has an interface that is similar to the KeY GUI, but is much simplified.

There are two KeY frontends in the shape of extensions of the popular software
development environment Eclipse: the Symbolic Execution Debugger, mentioned
above in Section 1.3.4 and discussed more fully in Chapter 11, is fully immersed
into Eclipse. Generation of POs and proving them happens in the background, the



16 1 Quo Vadis Formal Verification?

KeY system is completely invisible to the user. This is made possible by a dedicated
symbolic execution API which exports the capabilities of the KeY system (described
in the previous subsections) to external programs without having to go via the KeY
GUI. Finally, the Eclipse integration of the KeY system attempts to integrate formal
verification with KeY into the standard development workflow. Currently, there are
two Eclipse extensions: the KeY 4 Eclipse Starter that connects existing Java projects
with the KeY system so it can be invoked from within Eclipse to verify methods.
The second extension is called KeY Resources and extends a standard Eclipse Java
project into a KeY project that permits to run proofs in the background and to manage
open proof obligations. The Eclipse integration is discussed in Chapter 15.

1.5 The Next Ten Years

A decade has passed since the first lines of the first edition of the KeY book [Beckert
et al., 2007] were written. In this introduction we tried to summarize what has
happened since then and where we stand at the moment. Now we take a glimpse at
the future and discuss what appear to be the most likely developments. The third
edition of the KeY book will tell whether we are on target.

1.5.1 Modular Architecture

The architecture of the KeY framework laid out in the previous section suggests
that the KeY system can be reused and instantiated for its various incarnations and
usage scenarios. To tell the truth, this is not quite the case. In reality, there are a
number of profiles of the KeY system: for functional verification, for Hoare logic,
for information flow, etc. They all started from the same basis, but live in different
development branches. The problem with this is obvious: it is difficult to propagate
bug fixes and other improvements. The system KeYmaera [Platzer and Quesel, 2008],
now developed by André Platzer at CMU Pittsburgh, branched off from KeY at
around 2007 and soon the differences between the systems became too large to
attempt a merge. This is regrettable, because a lot of improvements were made for
each system over the years that would have benefited both of them, but are now too
expensive to transfer.

To avoid this situation in the future, a major refactoring of the KeY system has been
initiated. There will be an extensible common core, into which all major development
branches eventually will be remerged.

A closely related architectural issue concerns the target language. KeY has been
developed to verify Java programs, but currently supports at least also the modeling
language ABS [Bubel et al., 2014a] and the while-language used in KeY Hoare.
A version of KeY for a subset of C was once available [Mürk et al., 2007], but
was abandoned: the lack of multi-language support in KeY made it impossible to



1.5. The Next Ten Years 17

attempt a merge and maintaining a separate branch was too expensive. Finally, the
sound compilation approach detailed in Chapter 14 requires at least to support Java
bytecode. All this suggests that KeY should strive to enable support for multiple target
languages. This seems possible, because the language-specific frontends (parsers,
pretty-printers) are largely separate and the internal data structures dealing with
ASTs are fairly general. Importantly, the taclet concept and the prover core can be
made generic.

We expect that the next major release of KeY will have a unified architecture for
different extensions and will offer multi-target language support.

1.5.2 Relational Properties Are Everywhere

Two of the various kinds of proof obligations currently supported by KeY are re-
lational in their nature (see Section 1.3.1): information flow and sound program
transformation. We argued above that relational properties are a highly interesting
scenario for deductive verification, because specifications are uniform and coupling
invariants are much easier to derive than functional invariants. We predict that rela-
tional verification problems will become a hotspot for research in formal verification
in the coming years. Not only are they feasible and practically relevant, but after a
closer look they are very widespread, even ubiquitous in software development. To
name just three examples:

1. Fault injection is an import testing strategy against external faults for safety-
critical systems. Using deductive verification, it can be generalized to a symbolic
fault analysis [Larsson and Hähnle, 2007]. In analogy to verification of informa-
tion flow properties one can then prove properties about the fault propagation
for a given program.

2. A growing problem for software that must work in many different environments
and configurations is to detect and to exclude unwanted feature interactions
[Apel et al., 2010]. To compare the behavior of two versions of a program with
different features again is a relational problem.

3. Regression verification is a problem of huge practical interest, particularly in
modern software development processes, such as continuous deployment. As
pointed out above in Section 1.3.1, it is much easier to verify the preservation
of behavior among two closely related programs than to establish functional
correctness. Therefore, automatic regression verification is an interesting and
feasible goal of deductive verification [Felsing et al., 2014].

And there is another important reason why relational verification problems are
interesting: they provide a natural bridge to test-based approaches. For example,
from a failed attempt at verifying secure information flow, it is possible to extract a
candidate for an attack on privacy, an exploit [Do et al., 2015]; from a failed attempt
to show behavioral equivalence of two versions of a program one can generate a
regression test, and so on.



18 1 Quo Vadis Formal Verification?

1.5.3 Learning from Others

Recently there has been substantial progress in the field of automata learning related
to the problem of learning behavioral structures from sets of computation traces
[Isberner et al., 2014]. It is possible to learn automata with at least a limited notion
of data types as part of their state. Formal verification tools at the moment almost
completely ignore the potential of machine learning, even though, as some first work
demonstrates [Howar et al., 2013], it should be possible to alleviate the specification
authoring problem (Section 1.2). Vice versa, learning algorithms for state machines
typically suffer from slow convergence and from scaling issues. Why not try to
import successful techniques from formal verification, such as contracts or symbolic
values, to machine learning? Clearly, here lie vast research opportunities.

1.5.4 Code Reviews

Code inspections and code reviews [Fagan, 1976] are popular and important software
quality assurance measures [Sommerville, 2015]. One of their downsides is that they
are very time-intensive. Tools such as the SED (see Chapter 11) can and should
be further developed into Code Review Assistants that efficiently guide through all
possible behaviors, animate execution paths and data structures and can find potential
problems or code smells not merely based on metrics and syntactic analyses, but
based on deductive verification technology. A recent experimental user case study
[Hentschel et al., 2016] showed that this is a promising path.

1.5.5 Integration

When writing an overview article on deductive verification [Beckert and Hähnle,
2014], we realized to which large extent the verification community suffers from a
fragmentation of tools. There are well over one hundred verification tools currently
available with widely varying scopes, theoretical bases, and usage scenarios. Only
a few subcommunities organize competitions or systematic tool comparisons [Kle-
banov et al., 2011, Beyer, 2015]. In most cases, larger case studies are not publicly
available. With the exception of SMT solvers that are integrated via the SMT-LIB
standard (smt-lib.org) [Barrett et al., 2010], virtually no generally accepted inter-
face languages or APIs exist. Even programs annotated in JML cannot be readily
exchanged, because of slightly different interpretation of the semantics of some JML
constructs in different tools and because of different coverage of Java.

Even though it is natural to combine, for instance, symbolic execution with
invariant generation and termination analysis, this is exceedingly time consuming in
practice. It is important to work on exchange standards that would allow, for example,



1.5. The Next Ten Years 19

to transfer symbolic program states or invariants at a certain point of execution in a
semantically sound manner.

Acknowledgments and Disclaimer

I would like to thank Richard Bubel and Martin Hentschel for helping to clarify
the KeY architecture discussed in Section 1.4 and for drafting the first version of
Figure 1.1. Daniel Grahl, Martin Hentschel, Peter Schmitt, and Shmuel Tyszberowicz
all proofread this chapter and gave valuable feedback. More generally, this chapter
could not have been written without the continuing efforts of the whole KeY team.
Nevertheless, the opinions and judgments expressed here are the author’s and do not
necessarily reflect those of everyone else involved in KeY.


