
Bachelor/Master thesis:
Algorithmic Debugging with
Symbolic Execution Trees

Software Engineering Group — Martin Hentschel — hentschel@cs.tu-darmstadt.de

Context

Symbolic execution is a program analysis technique
that runs a program with symbolic values in lieu
of concrete values. Thus whenever the knowledge
about symbolic values is not enough to made a de-
cision symbolic execution splits to cover all possible
executions. This results in a symbolic execution tree
which captures the entire program behavior up to
a certain point.

The Symbolic Execution Debugger (SED), avail-
able at www.key-project.org, extends the Eclipse
debug platform by symbolic execution and by vi-
sualization capabilities. SED works for nearly full
sequential JAVA and provides a symbolic execu-
tion engine based on the KeY verification system.
The user can directly execute any method or state-
ment(s) without setting up a fixture. Being based
on symbolic execution, all feasible execution paths
are discovered simultaneously. The users can focus
on the paths of interest and control symbolic exe-
cution using classical navigation functionality like
step into/over or breakpoints. The symbolic execu-
tion tree is built up incrementally and visualized.

Algorithmic debugging (also called declarative
debugging) is a semi-automatic debugging tech-
nique that allows the developer to identify buggy
methods by answering questions about the ex-
pected behavior of method calls. Method calls are
recorded during a buggy program execution and
represented as execution tree. The user is iteratively
asked to classify recorded method calls as buggy or
correct until a single method as source of the bug
is isolated. Different strategies and transformations
of the execution tree exist to reduce the number of
questions that have to be answered.

Thesis

The aim of this thesis is to identify sources of bugs
as precise and as automatic as possible using sym-
bolic execution and algorithmic debugging. This
requires to

a) apply and extend the idea of algorithmic de-
bugging on symbolic execution trees.

b) implement the developed concept as part of
Symbolic Execution Debugger.

c) evaluate the approach using case studies.

The following mockup gives an impression how
the user interface could look like. The node with
a red border represents a buggy program state,
while the green outlined node represents an ex-
pected program state. The node with the orange
border has been identified as a potential candidate
as origin for the bug and the user is asked to con-
firm or deny this claim.

Contact

Martin Hentschel — Software Engineering Group
— hentschel@cs.tu-darmstadt.de — S2 02 | A223

http://www.key-project.org

