
Bachelor Thesis : Speculated
Loop Invariants for Proofs

Software Engineering Group – Jakob Laenge
laenge@cs.tu-darmstadt.de

Context

The KeY theorem prover can show the correctness of a

given program with respect to its specification. This is ac-

complished using a combination of symbolic execution and

deductive verification. KeY extends a sequent calculus for

first-order logic to reason about formulas containing pro-

grams. While the effects of assignments and conditional

statements can be captured precisely without user interac-

tion, to reason about unbounded loops KeY requires speci-

fications in the form of so-called loop invariants.

A loop invariant is a formula that allows KeY to reduce

the correctness proof of a program containing a loop into

three simpler tasks: (i) show that the loop invariant holds

when the loop is visited for the first time, (ii) show that

the loop invariant is preserved when the loop’s body is

executed, and (iii) show that the loop invariant is strong

enough to prove the correctness of the remaining program.

Not every formula is a suitable loop invariant, and hence

using an unsuitable formula may prevent KeY from show-

ing the correctness of the program.

Currently KeY requires the user to annotate every un-

bounded loop with a suitable loop invariant. This imposes

a great burden on the user and hinders automated verifi-

cation. While there exist a vast number of different tech-

niques for automated invariant synthesis, not all of them

are guaranteed to produce suitable invariants. Recently

a very promising approach was developed that employs

dynamic program analysis to discover polynomial invari-

ants. It proceeds by running the program over a test suite

and measuring the values of the program variables at the

loop’s head during different executions. These data sam-

ples can be interpreted as points in a coordinate system

and a loop invariant can be interpreted as a polynomial that

runs through all of these points. Thus the task of invariant

generation can be reduced to standard mathematical prob-

lems from linear algebra.

While the approach sketched above is very efficient, it

suffers from a major drawback: the computed invariants

are merely speculated invariants, i.e. the algorithm pro-

vides no guarantee that the inferred formulas are suitable.

Therefore, plugging this invariant generator directly into

KeYmay not allow KeY to prove correctness of the program.

Thesis

The goal of this thesis is: integrating an invariant gener-

ation algorithm which produces speculated invariants into

a theorem prover that requires suitable invariants. To this

end the invariant generation algorithm outlined above is

to be implemented and integrated into KeY. The algorithm

should be implemented in Java, using external libraries for

equality solving. The integration into KeY should follow an

on-demand style. This means that loop invariants are only

computed as required by the theorem prover. To accom-

plish this, the original algorithm has to be slightly adapted

to work on sequents instead of programs and specifications.

Additionally, the original algorithm should be extended

such that it may provide a counterexample if the input se-

quent is unsatisfiable. Finally, a simple backtracking algo-

rithms has to be devised that allows the prover to recover

from an unsuitable invariant.

Approximate Work Distribution

Analysis

Programming

Literature

Contact

Jakob Laenge

Software Engineering Group

laenge@cs.tu-darmstadt.de

Office: S2|02/A202, Phone +49 6151 16-21366

1


