
Bachelor thesis:
Guided Navigation in
Symbolic Execution Trees

Software Engineering Group — Martin Hentschel — hentschel@cs.tu-darmstadt.de

Context

Debugging is a central and unavoidable task in
software development which requires a consider-
able amount of the overall project effort. How-
ever, debugging tools evolved slowly in the last
decades providing mainly the standard function-
ality for step wise execution, inspection of the cur-
rent program state and suspension of the execution
before a marked statement is executed.

A difficult task for a user of classical interac-
tive debuggers is to setup the initial program state
which leads to an execution of the system exhibit-
ing the bug. This requires often a number of non-
trivial steps to construct the required complex data
structures. Another reason why debugging is hard
is that even if the buggy statement is found, the
cause of failure during program execution must be
determined. But intermediate states are no longer
available and the user has to repeat debugging ses-
sions until the cause of failure is understood.

A way out of this dilemma is symbolic execution.
It allows to execute directly any method or even
a single statement using symbolic in lieu of con-
crete values. Thus execution cannot follow a single
path and has to split whenever multiple paths are
possible resulting in a symbolic execution tree which
captures the entire program behavior up to a cer-
tain point.

The Symbolic Execution Debugger (SED), avail-
able at www.key-project.org, extends the Eclipse
debug platform by interactive symbolic execution.
It defines first how symbolic execution trees are
represented and provides second the functional-
ity to visualize them. A concrete implementation
which works for nearly full sequential JAVA based
on verification tool KeY is also provided.

Thesis

Symbolic execution trees can be very large and
thus it is hard for the user to concentrate on paths
of interest. More precise, a tree will be wide in
case of many possible execution paths and each
path can be deep in case of many performed steps.

The aim of this thesis is to develop concepts to
guide the user during symbolic execution focussing
of the parts of interest and to improve visualization
of symbolic execution trees. Results have to be re-
alized as part of the Symbolic Execution Debugger.

Several ideas should be developed and explored.
For instance, related symbolic execution tree nodes
(e.g. the execution of a method body) can be sum-
marized. Such a summary can be collapsed to hide
contained nodes, but it has still to show possible
paths together with the conditions when they are
taken. During execution, the summary can be auto-
matically collapsed when it is completed. The red
box in the following mockup shows how it could
look like. Nodes within the red frame won’t be
shown if it is collapsed and its size will be reduced
to a minimum.

Contact

Martin Hentschel — Software Engineering Group
— hentschel@cs.tu-darmstadt.de — S2 02 | A223

http://www.key-project.org

