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Background

Symbolic execution is a versatile static program analy-
sis technique. It is used for automatic test generation,
fuzzing, debugging, deductive program verification and
more.

In our group we developed the symbolic execution de-
bugger (SED) which allows to analyse, inspect and vi-
sualize all feasible program execution paths and their
intermediate states (see Figure 1).

The SED is realized as an Eclipse extension and hooks
into the standard debugging framework provided by

& Symbolic Debug - SED Examples/src/Number,java - Eclipse Platform

Eclipse. The SED uses the KeY program verifier for
Java as its symbolic execution engine, but is designed
in modular fashion allowing one to exchange the under-
lying symbolic execution engine.

This thesis is in the context of the LOEWE-Schwerpunkt
“Software-Factory 4.0”. The idea is to use the SED to
perform regression analysis on C programs.
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Figure 1: The Symbolic Execution Debugger




Task

Literature

The task is to adapt SED to be used for C programs using
the KLEE symbolic interpreter instead of KeY. KLEE is a
symbolic interpreter for LIVM-IR code which is an in-
termediate representation language used by LIVM com-
piler framework. C source code (and other) compiled by
LIVM is first translated to LLVM-IR and then compiled to
the target (machine) language.

In detail, the goals of this thesis consist of

* visualization and control of KLEE’s symbolic exe-
cution using SED

* extraction and presentation of the symbolic states
and the the symbolic program heap of the C pro-
gram encountered during symbolic execution

* extraction of path conditions

* integration of SED in Eclipse CDT

Requirements

* Very good knowledge of Java, knowledge about
Eclipse not required but of advantage

* Basic knowledge of C (or interest to learn C)

* Interest in formal methods and static program
analysis

M. Hentschel et al.: The Symbolic Execution
Debugger (SED): a platform for interactive sym-
bolic execution, debugging, verification and more,
International Journal on Software Tools for
Technology Transfer, Springer, 2018, available
at: https://doi.org/10.1007/s10009-018-0490-9
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KLEE Homepage,
klee.github.io/getting-started/

KeY SED Homepage,
www.key-project.org/applications/debugging/

Software-Factory 4.0 Homepage,
www.software-factory-4-0.de
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