Symbolic State Debugging
of C/LLVM-IR programs

TECHNISCHE
UNIVERSITAT
DARMSTADT

Engineering
Group

Master’s Thesis in Software Engineering (FG Software Engineering, Prof. Dr. Reiner Hahnle)

Background

Symbolic execution is a versatile static program analy-
sis technique. It is used for automatic test generation,
fuzzing, debugging, deductive program verification and
more.

In our group we developed the symbolic execution de-
bugger (SED) which allows to analyse, inspect and vi-
sualize all feasible program execution paths and their
intermediate states (see Figure 1).

The SED is realized as an Eclipse extension and hooks
into the standard debugging framework provided by

& Symbolic Debug - SED Examples/src/Number,java - Eclipse Platform

Eclipse. The SED uses the KeY program verifier for
Java as its symbolic execution engine, but is designed
in modular fashion allowing one to exchange the under-
lying symbolic execution engine.

This thesis is in the context of the LOEWE-Schwerpunkt
“Software-Factory 4.0”. The idea is to use the SED to
perform regression analysis on C programs.

Approximate Work Distribution

Analysis e 1)
Programming CEINNINNNN)
Literature IS I I

Eile Edit Source Refactor Mavigate Search Project SED Bample KeY Run Window Evaluation Help

T S e [l M SRS ey
: - RS -
=g

‘ -

’i‘} Debug &3 ‘5% Symbolic Execution Tree 38

~ [Numberfequals(Numbe A
~ 2 equals(Number)

Slits -0 -G -iEm o -
|Quick Access |I:| [| &7 Java [Symbolic Debug
E|l&|a&w: «| == 8

(@ <start)

= -
=t =call seff equals(n)> }

v o <start>
= <call self.equi

v b if (this.conten
v 43 In=nul
v *"I self.co
= ret
1= <n
D <ew
< 3

(& n=nu)

T ~
L" seff content = n.content |

& Symbolic Exec.. 52 = B

:’é i (this. content))
Nk

- ~
[L" kelf content = n.content |

(= = \'I
. n = null

= \
{ = refurnfalse;

.

"’T_E <return TRUE as result of equals> \'1—1’1‘_5 <return FALSE as result of awals;'r—:ﬂ;_g <throw java.lang NullPointerException= —

p— | =) (® <end=) (® <end>) -_0} =uncaught java_lang NulPointerBxception=)
e e
NM:-F:‘ e l [Properties &2 M ~ = 8 [4] Numberjava &2 = 0
e e P [£l
= . N ‘ S— | 1 public class Number {
Node ame: | return true 2 private int content;
()= Vaniabl = 0 -
fariables 3 Kev Type: = Statement
HE v Call Stack public boolean equals (Number n) {
Path: ‘ In = null & self.content = n.content | if (content == n.content) {
MName Value Constraints e
v @ self self = }
@ content | n.content K" Symbolic Execution Settings 53 = 8 else {
v @n n return false;
% content n.content Symbolic Execution Options "
@ e null Method Treatment

(@) Inline Methods (_) Use Contracts

Figure 1: The Symbolic Execution Debugger

Task

Literature

The task is to adapt SED to be used for C programs using
the KLEE symbolic interpreter instead of KeY. KLEE is a
symbolic interpreter for LIVM-IR code which is an in-
termediate representation language used by LIVM com-
piler framework. C source code (and other) compiled by
LIVM is first translated to LLVM-IR and then compiled to
the target (machine) language.

In detail, the goals of this thesis consist of

* visualization and control of KLEE’s symbolic exe-
cution using SED

* extraction and presentation of the symbolic states
and the the symbolic program heap of the C pro-
gram encountered during symbolic execution

* extraction of path conditions

* integration of SED in Eclipse CDT

Requirements

* Very good knowledge of Java, knowledge about
Eclipse not required but of advantage

* Basic knowledge of C (or interest to learn C)

* Interest in formal methods and static program
analysis

M. Hentschel et al.: The Symbolic Execution
Debugger (SED): a platform for interactive sym-
bolic execution, debugging, verification and more,
International Journal on Software Tools for
Technology Transfer, Springer, 2018, available
at: https://doi.org/10.1007/s10009-018-0490-9
(from within the TU Darmstadt network)

KLEE Homepage,
klee.github.io/getting-started/

KeY SED Homepage,
www.key-project.org/applications/debugging/

Software-Factory 4.0 Homepage,
www.software-factory-4-0.de

Contact

FG Software Engineering

¢ Nathan Wasser

email: wasser@cs.tu-darmstadt.de
room: A205 in S2|02

Richard Bubel
email: bubel@cs.tu-darmstadt.de
room A225 in S2|02)

https://doi.org/10.1007/s10009-018-0490-9
http://klee.github.io/getting-started/
https://www.key-project.org/applications/debugging/
http://www.software-factory-4-0.de
mailto:wasser@cs.tu-darmstadt.de
mailto:bubel@cs.tu-darmstadt.de

