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Abstract

Minimum time and minimum energy point-to-point trajectories for an
industrial robot of the type Manutec r3 are computed subject to state con-
straints on the angular velocities. The numerical solutions of these optimal
control problems are obtained in an efficient way by a combination of a di-
rect collocation and an indirect multiple shooting method. This combination
links the benefits of both approaches: A large domain of convergence and a
highly accurate solution. The numerical results show that the constraints on
the angular velocities become active during large parts of the time optimal
motion. But the resulting stress on the links can be significantly reduced
by a minimum energy trajectory that is only about ten percent slower than
the minimum time trajectory. As a by-product, the reliability of the direct
collocation method in estimating adjoint variables and the efficiency of the
combination of direct collocation and multiple shooting is demonstrated. The
highly accurate solutions reported in this paper may also serve as benchmark
problems for other methods.

1 Introduction

With the increasing use of robotic manipulators the requirements of their abili-
ties are also increasing. An essential part in design and application of robots is
their dynamic behaviour. The discussion of optimal trajectories within the context
of path planning and optimal design of parameters leads to the optimal control
problems discussed in this paper.

Several methods for solving optimal point-to-point trajectory problems of
robotic manipulators have been suggested and applied, e. g., in [7], [13], [14], [15],
[23], to cite only a few of many papers.

As an extension to the previous cited work we investigate a non academic,

highly nonlinear model of a commercially available robot, discuss several objectives
for optimal trajectories and consider state constraints on the angular velocities that
play an important role in the time optimal motion.
In our approach, we combine a direct collocation and an indirect multiple shooting
method in an hybrid approach (cf. [28]) with a large domain of convergence and
highly accurate solutions. The direct collocation method is easily capable to treat
a wide variety of objectives and constraints on the state and control variables.
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2 Problem Statement

q2

Figure 1: Three degrees of freedom in the DLR model 2 of the r3 robot.

We consider the Manutec r3 robot with 6 links. As the first 3 degrees of
freedom (d.o.f.) are mainly responsible for the position and the last 3 d.o.f. for the
orientation of the tool center point frame, we restrict ourself to the (first) 3 d.o.f.
case. The DLR model 2 of the Manutec r3 robot was developed by Otter and
Tiirk [19] and describes the motion of the links as a function of the control input
signals of the robot drives

M(q(t)) - §(t) = D-ut) +x*(a(®),a®) +x(a(?)), t€[0,t], (1)

where ¢ = (q1(t),¢2(t),q3(t))T are the relative angles between the arms,the nor-
malized torque controls are u = (u1(t),us(t),us(t))T, D = diag(d;,ds,ds) is a
scaling matrix with d; = const[Nm/V], M (q) is the positive definite and symmet-
ric (3 x 3)-matrix of moments of inertia, x%(¢(t),q(t)) are the moments caused
by coriolis and centrifugal forces, and x9(¢(t)) are the moments caused by gravi-
tational forces. The final time ¢y may be prescribed or free. The full data of the
dynamic model can be found in [19]. Just to give an impression of the model we
give the structure of the first element of the mass matrix M

Mii(g) = ci(sin(ge + gs))” + cosin(ge + g3) sin(ga)
+es (sin(g2))” + ca (cos(ga + g3))” + ¢ (cos(q))? +cs,  (2)

where ¢; = const, i = 1,...,6, and of the driving forces x¢(¢, q)

3 3
X} dq) = Z(erk(q) q'k) g, i=1,2,3, (3)
j=1 \k=1

(4)

The dynamic behaviour of the robot is now given either in an efficient implicit form
of the right hand side of § = M~ (Du+ x%+ x?) by the subroutine R3M2SI [19] or
explicitly by the output of a symbolic computation system given in the appendix
of [19].
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Point-to-point trajectories are to be considered, i. e.,

q(0) = qo, qlty) =qr, d(0)=4do, q(ts) = dy- (5)

Here, we consider stationary boundary conditions, i. e., go = ¢y = 0. As objectives
for optimal trajectories three criterions are investigated: The minimum time

Ji[u,tg] := ty — min!, (6)

the minimum energy

ty 3
Tofu] = /0 S (ui(t)? dt - min! , (7)
i=1

and the minimum power consumption (cf. [16], [21])

ty 3
Tofu] = /0 3 G us(®)? e mint (8)

The final time ¢; has to be prescribed for J, and J; in order to obtain useful
solutions. Otherwise, a free t; will tend to become very large. Eighteen technical
constraints have to be considered (cf. [19]): There are control constraints on the
torque voltages

|u1(t)| < Uj,max = 75[V], 1=1,2,3, (9)
state constraints on the angles
la(t)] < 2.97[rad],
lg2(t)] < 2.01[rad], (10)
lgs(t)] < 2.86[rad],

and state constraints on the angular velocities

lgi(t)] < 3.0[rad/s],
lg2(t)] < 1.5[rad/s], (11)
lgs(t)] < 5.2[rad/s].

The numerical results show that the latter constraints become often active during
the time optimal motions. Thus they play an important role within the optimiza-
tion.

3 Numerical Methods

In order to derive the necessary conditions of optimality and to apply the general
numerical methods, a formal transformation of the second order system to a first
order one has to be performed. First the notation

T = (ml,xZ)T = (xla .. 'axG)Ta xl = (qlanaq3)Tﬂ $2 = ((jl:Cj?;qé)T (12)
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is introduced. The resulting system of first order differential equations is

T = T T4

T2 = @ T2 = T5 = z?

5= w, \n 2 -
T4y = Q1 T4

Ts = Go Ts = M~ '(z') (Du+ x4z, 2?) + x9 (")) .

Te = (3 Tg

For convenience, the functionals Jo; and Js3, resp., are transformed into a Mayer
type functional by defining an additional state variable z7

X (wi(®)?, J=Js, _ B .
L7 —{ 2?21 (x,-+3(t)uz~(t))2, J=Js, , 27(0) =0, = Ju] = z7(ty) —>r:111:)'

3.1 Necessary Conditions of Optimality
Necessary conditions of optimality are obtained via the minimum principle, cf.,
e. g., [3]. With the adjoint variables

A=O5N0)T, A= (O A0, 08)7T, A= (A, s, )T (15)

the Hamiltonian function of the unconstrained problem is

HY(z,u,A) = (AN)T2” + (XW)TM 7' (2") (Du+ x4 2", 2%) + X/ (z"))
0, J=1
+ A S8 (uit)?, J=1J . (16)

MYl @i (us()?, J=Js

To have a uniform treatment of active upper or lower state constraints we introduce
the new state constraints

Si = q?(t) _qz?,max S 07 S3+’i = q?(t) _ng,max S 07 i = 17273‘ (17)

With the abbreviations for the total time derivatives of S

k
SZ(’“)::C%Z-, i=1,...,6, k=0,1,2,... (18)
we find 5 5 5
6—1”5,(1):0, 6—1”5‘,(2);&0, 8—1”53522.;&0, i=1,2,3. (19)

The functions S; are second and the Ssy; are first order state constraints. Thus
the Hamiltonian becomes (cf. Bryson, Denham, Dreyfus [2])

3 3
H(z,u ) = H™ + 3 582 + 3 534385, (20)

i=1 i=1
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where n = 7(t) is a multiplier. The necessary conditions from the minimum prin-
ciple yield for the state and adjoint variables among others (cf. [20])

. O0H . O0H .
z; = 6_)\1" Ai = _6301-’ 771205 7’]15@:0, i=1,...,6. (21)

The optimal control is determined by the minimum principle
u*(t) = argmin H(z(t), v, A(#),n(t)) (22)

where U denotes the control space. If J = J, or J3 then A7 = 1 in [0, ¢;] because

M) =0, M(ty) = ax?éf)’ (23)

and SJ(-k), k=0,1,2, and Séllj, 1 =0,1,7 =1,2,3, and the right hand sides of
the first order differential equations (13), (14) do not depend on x7.
Furthermore, it can be easily shown (for all three objectives) that S;(t) = 0 and
S344(t) = 0,4=1,2, or 3, cannot occur at the same time (cf. [20], [22]).

In the time optimal motion (J = Ji) the controls appear linearly in H. Thus H is
not regular. If no state constraint is active the i-th optimal control of bang-bang
type is determined by the sign of the switching function W;

uz(t) — { +ui,maxa Wz < 0; (24)

Wi(t) = (W) [M ™" (z")] ~Ujmax, Wi > 0.

i—th column’

The case of a singular control, i. e., W; = 0 in a whole subinterval, did not occur
in the point-to-point trajectories considered here, but might be possible, too.
The minimum time ¢; is determined by

o
Btf

As dH/dt =0, t € [0,ty], it follows that H = const = —1 along the time optimal
trajectory.

If the minimum power consumption (J = J3) or the minimum energy criterion
(J = J3) are chosen the unbounded optimal control is determined by

0
6u,-

if S;(t) # 0 and S344(t) # 0.
If J = Js it can be shown that if ¢;(0) = 0 (i = 1,2, or 3) then there exists € > 0

such that |u;(t)] = Ui max, for t € [0, €], and in the same way at ¢; (cf. [20], [22]).
If a state constraint is active, e. g., S; = 0 or S34; = 0 then w; is determined from

Hlt:tf = = —1. (25)

H =0, i=123, (26)

Sz@ =0or Séi)l = 0, resp., for any objective.

All in all, the necessary conditions can be stated as a well-defined multi-point
boundary value problem if the optimal switching structure of state and control
constraints is known. For more details we refer the interested reader to [20].
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3.2 Multiple Shooting Method

The multiple shooting method has shown to be an effective tool in solving highly
nonlinear multi-point boundary value problems. The method is described, e. g.,
by Bulirsch [4] and Stoer, Bulirsch [24]. Its application to a complicated state con-
strained optimal control problem is described by Bulirsch, Montrone, and Pesch [5].
Here, we used the code BNDSCO due to Oberle [18].

The main drawbacks when applying the multiple shooting method in the numerical
solution of optimal control problems are 1. the derivation of the necessary con-
ditions (e. g., the adjoint differential equations), 2. the estimation of the optimal
switching structure, and 3. the estimation of an appropriate initial guess of the
unknown state and adjoint variables z(t), A(t), n(t) in order to start the iteration
process. The great advantage of the multiple shooting method is the verification
of the optimality conditions resulting in a highly accurate solution.

To overcome the first drawback a good knowledge of optimal control theory is
required. Proper estimates of the switching structure and of the adjoint variables
might then be provided by the use of a homotopy or continuation technique. This
can be a very laborious task (cf. [5] for an example) that is especially cumbersome
in our problem as none of the adjoint variables is given either at 0 or ;. In this
paper we will demonstrate how the drawbacks 2 and 3 can be overcome when a
direct collocation method is used in a pre-computation to estimate the optimal
switching structure, state and adjoint variables. In the derivation of the necessary
conditions we used the symbolic computation method MAPLE due to Char et
al. [6].

3.3 Direct Collocation Method

The basis of the direct collocation approach is a finite dimensional approximation
of control and state variables, i. e., a discretization. Here, we choose a continuous,
piecewise linear control approximation and a continuously differentiable, piecewise
cubic state approximation, cf. Hargraves, Paris [11] and [25], [26], [28]. The dif-
ferential equations, the state and control constraints are only pointwise fulfilled
in this approach. The discretization results in a nonlinear optimization problem
subject to nonlinear constraints. Convergence properties of the method and de-
tails of an efficient implementation are discussed in [26], [27]. Here, we used the
code DIRCOL [27] where the resulting nonlinear programming problems are solved
by the Sequential Quadratic Programming method NPSOL due to Gill, Murray,
Saunders, and Wright [9]. The direct collocation method has a large domain of
convergence and is easy to handle as the user has not to be concerned with adjoint
variables or necessary conditions of optimality.

3.4 Combination of the Direct and the Indirect Method

Following [27] and [28] both methods are combined as follows: The direct collo-
cation method is applied with a poor initial guess of the solution z(t), u(¢), i. e,
with an initial trajectory that interpolates the given values at initial and final
time linearly. The obtained (suboptimal) solution provides reliable estimates of
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Hybrid Approach

Pre-Computation Symbolic Computation

| Direct Collocation |
! '

| |
| |
| |
' Estimates of o [
L q(t), 4(), u(t), £, Ag(), Ag(2), Hamiltonian H |
| |
| |
| |
| |

and the switching structure and 0H/0g;, OH/0g;, -

Refinement
| Multiple Shooting ]

very accurate, optimal solution

Figure 2: Combination of direct, indirect and symbolic methods in robot trajectory
optimization.

the state and adjoint variables and of the switching structure of state and control
constraints (cf. [26], [27]). With this guess the multiple shooting method is applied
to the multi-point boundary value problem resulting from the necessary conditions
of optimality. For the derivation of the necessary conditions we used the symbolic
computation method MAPLE [6]: The equations of motion are explicitly given in
the appendix of [19] in the form of Eq. (1). First the explicit inverse of the mass
matrix M ~1(q) is computed. Then the partial derivatives of each component of the
vector function M~ (Du + x¢ + x9) with respect to ¢;, ¢;, i = 1,2, 3, are derived.
As output of the MAPLE program we obtain a FORTRAN code for M1, the
adjoint differential equations, the Hamiltonian function and the formulae for the
boundary controls from SZ-@) =0or Séi)i = 0 in the state constrained case. The
resulting FORTRAN codes for the inverse mass matrix are about 630 lines and
for the adjoint differential equations are about 3350 lines long although in each
step of the derivation several optimization strategies are applied in MAPLE to
simplify the resulting formulae. For more than three degrees of freedom it might
be more efficient to use automatic differentiation [10] and to make even more use
of the special structure of the robotic dynamics in order to keep the number of the
resulting arithmetic operations as small as possible.

4 Numerical Results

All computations have been performed on a SUN Sparc station 2 with 40 MHz.
A special quarter rotation around the base of the robot is investigated with a load
of 0 kg

0.00 1.00
q(0) = | =150 ), qlty)=| -195 ), ¢(0)=0, ¢(t;)=0.  (27)
0.00 1.00

The direct collocation method is at first applied to the state constrained mini-
mum time problem with §;(t) = ¢(0) + (¢t/tf)(q(ts) — q(0)), ¢;(t) =0, @;(¢t) =0,
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NGRID NY | NLEQ | NITER | NZJAC | CPU-Sec tr
7 58 42 162 33.3% 75 | 0.56901402

13 118 84 6 17.1% 43 | 0.49689417

21 198 140 9 10.4% 145 | 0.49574811

47 458 322 6 4.5% 960 | 0.49521483

81 798 560 6 2.6% 5248 | 0.49523283
NDEQ | NKNOT NS | NITER — | CPU-Sec ty
19 15 8 14 - 393 | 0.49518904

Table 1: Convergence history of the first time optimal motion.

i=1,2,3,t € [0,t7] and #; = 1[s] as initial estimates of the unknown solution.
A first solution is obtained for 7 equidistant grid points. A refinement of the dis-
cretization yields a sequence of nonlinear programming problems with increasing
dimensions ending up in an 81 grid point solution. The convergence history is
shown in Table 1 where NGRID is the number of grid points of the direct collo-
cation method DIRCOL, NY is the number of degrees of freedom of the nonlinear
program, NLEQ is the number of nonlinear equality constraints of the nonlin-
ear program, NITER is the number of iterations of the SQP-method NPSOL [9],
NZJAC is the percentage of non zero Jacobian elements in the nonlinear pro-
gram, CPU-Sec is the computing time in seconds, NDEQ is the number of dif-
ferential equations of the multi-point boundary value problem of the necessary
conditions, NKNOT is the number of multiple shooting nodes used in BNDSCO,
NS is the number of switching points, NITER is the number of Newton iterations
in BNDSCO.

Remark 1. The inequality constraints on state and control variables are treated
as box constraints in the nonlinear program. Therefore no nonlinear inequality but
only equality constraints appear in the discretized problem.

Remark 2. To compare the time optimal with the minimum energy solution a
seventh state variable z7 has been used in the computations. Therefore the com-
puting time for the time optimal motion will in fact be less than the reported
times if 27 is not computed in the optimization.

Remark 3. It is a remarkable fact the the number of SQP-iterations is not increas-
ing with the number of degrees of freedom in the nonlinear program. The increase
in computing time is due to the fact that the sparsity patterns in the gradients
are not yet used in the linear algebra of the quadratic programming subproblems.
Much efficiency can still be gained if an appropriate sparse linear algebra is used
(cf. Betts, Huffman [1] and Gill [8]).

From the solution for 81 grid points the switching structure is guessed, i. e.,
number and type of the switching points. With this switching structure and the
state and the estimated adjoint variables from the direct collocation method the
multiple shooting method is successfully applied to solve the multi-point bound-
ary value problem of optimality conditions. The solution of the direct collocation
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Figure 3: Solution curves for the state constrained time optimal motion of the
direct collocation method (—-—-— ) compared with the multiple shooting method
(—)- In the curves of the angles ¢;(t) there are no visible differences between
the two solutions. They are shown in Figure 5.

0 1 2 3 4 5 6 78 tf
. max
Q1 min
G o B R
Gz e
77777777 min | boundary
u1
u, -min boundary ___max___min
uz - max, boundary = min ,max.

Figure 4: Switching structure of the state constrained time optimal motion.

method is shown with the solution of the multiple shooting method in Figure 3,
the initial guess and the finally obtained switching points are listed in Table 2,
and the qualitative behaviour of the switching structure is shown in Figure 4. The
three dimensional motion of the robot is shown in Figure 6.

Remark 4. The oscillating behaviour of the discretized controls results from the
oscillating behaviour of the only pointwise fulfilled state constraints on ¢;. This is
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sw. point | 1 2 3 4 5 6 7 8
estimated | .0495 | .1114 | .1733 | .2538 | .330 | .359 | .390 | .464
final .04248 | .10585 | .16965 | .25243 | .3289 | .3556 | .3919 | .4638

Table 2: Estimated and final switching points of the state constrained time optimal
motion.

1ot g1 T s 150t g3
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o
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Figure 5: Solution curves of state and control variables for the state constrained

time optimal motion ( ), the minimum power consumption (- — —), the mini-
mum energy motion (—-—-— ), and the unconstrained time optimal motion (- -- - - ).
trajectory\criterion ty Otf PAGLL (ff > (qi(t)ui(t)” dt
state cons. min. time 0.49518904* | 51.351466 248.56509
uncons. min. time 0.44551780* | 75.179701 906.30989
min. energy 0.53000000 | 20.404247* 43.089470
min. power consump.® | 0.53000000 | 28.057499 35.911668*

Table 3: Comparison of results of the multiple shooting method for different ob-
jectives (correct figures of the direct collocation method underlined, * denotes the
optimum value, * solution only computed by direct collocation).
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(t=0)toB (t=ty) att =ity/4, i =0,1,2,3,4, and a comparison of the four
trajectories.

a common behaviour of direct collocation or direct shooting methods. Also, when
entering the constraint on ¢; the control u; is not continuous and the angular veloc-
ity ¢; is only continuous but not differentiable at the entry (and exit) point of the
state constraint. Therefore a better approximation of state and control variables
can be obtained either by increasing the number of grid points to a huge number or
by taking the switching structure into account in a so-called multi-stage or multi-
phase discretization, too ([26], [27]). Le., the switching points are introduced as
additional variables and the controls are allowed to be changed discontinuous and
the states to be changed not differentiable at the switching points. This adopted
discretization results in a more accurate solution of the direct collocation method
for the controls and the objective value with even less grid points (cf. [26] for an
example and [27] for more details). The non adopted standard discretization is
shown in Figure 3 to demonstrate the oscillating behaviour on state constraint
subarcs.

Remark 5. The adjoint variables and their estimates seem to differ significantly
on state constrained subarcs (cf. Figure 3). The estimates of adjoint variables ob-
tained by the direct collocation method are related to the adjoint variables from the
necessary conditions of Jacobson, Lele, and Speyer [12] where the state constraints
themselves are coupled to the free Hamiltonian with a multiplier function 7

3 3
H(z,u,\,7) = HT+ Z 1S + Zﬁi+353+z'- (28)

i=1 i=1

For the formulation of the multi-point boundary value problem the necessary con-
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ditions of Bryson, Denham, and Dreyfus (Eq. (20)) have been used. Both sets
of adjoint variables differ only along the state constrained subarcs and can be
transformed into each other [17], [27].

When the state constrained minimum time motion has been computed, solu-
tions to the minimum power consumption and the minimum energy criterion can
be computed to a prescribed final time that is only about 10-15 % slower than
the minimum time and the constraints on the angular velocities do not become
active. Here, we choose t; = 0.530[s] that is 7 % slower than the minimum time.
The solution curves are shown in Figure 5 and compared with the minimum time
solution.

To analyze the impact of the constraints on the angular velocities on the
time optimal motions, the minimum time solution is computed where the state
constraints are not taken into account. The resulting minimum time is 10 % faster
than the state constrained minimum time solution. But this solution violates the
constraints on ¢;(t), ¢ = 1,2,3, and on ¢2(¢) and is shown in Figure 5. Thus the
constraints on the angular velocities play an important role in the time optimal
motion.

Remark 6. All solutions shown in Figure 5 have been obtained by the combina-
tion of the direct and the indirect method besides the solution for the minimum
power consumption criterion. The only visible significant differences between the
solutions of both methods are in the state constrained time optimal motion and
are shown in Figure 3. The differences in the objective values are listed in Table 3.

5 Conclusions

It has been demonstrated that even a simple manoeuvre can exhibit quite a difficult
switching structure in the time optimal motion of an industrial robot. The state
constraints on the angular velocities play an important role in the time optimal
motion as they often become active. The knowledge of the fastest possible motion
provides reliable bounds for fast minimum energy motions. Hereby, the stress on
the links of the robot can be significantly decreased if an increase in time of about
ten percent is accepted. Thus lifetime and reliability of the robot will increase.

The second link of the Manutec r3 robot is the weakest. This is indicated
also by several other time optimal movements investigated by the authors where
the constraints on ¢»(t) become active during most parts of the motions. Thus a
better design of robots might be possible if the investigation of optimal trajectories
is included in the development phase.

The combination of direct and indirect methods, namely direct collocation
and multiple shooting, is an efficient hybrid approach for solving highly complex,
nonlinear, real life optimal control problems that amalgamates the benefits of both
methods.
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