In: H.J. Zimmermann (ed.): Proc. 2nd European Congress on Intelligent Techniques and Soft Computing
(EUFIT 94), Aachen, Germany (Sep. 20-23, 1994) 347-351.

Optimization of Dynamic Systems
in Industrial Applications

Oskar von Stryk

Lehrstuhl fiir Hohere und Numerische Mathematik
(Prof. Dr. Dr.h.c. R. Bulirsch)
Technische Universitat Miinchen
D-80290 Miinchen, Germany
Phone/Fax: Germany + 89 2105 8157 / 8156
E-mail: stryk@mathematik.tu-muenchen.de

Keywords: ordinary differential equations, parameter identification, optimal control

The simulation of technical processes by scientific computing has become an important tool
for the development of new technologies. In many applications, the required theoretical and
experimental research can be replaced in part by numerical computations. In this paper, we
focus on technical processes which can be described by dynamic systems, i. e., by the solution
of initial or boundary value problems in ordinary differential or differential algebraic equa-
tions. In this paper, several recently developed efficient numerical methods are presented.
Their impact in engineering is demonstrated by their application to three different classes of
problems, namely trajectory optimization, parameter estimation and design optimization.

P1. Optimal path planning for industrial robots
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Figure 1: An example of robot trajectory optimization.

The application of numerical optimization methods to trajectory optimization for industrial
robots has shown that large improvements are possible compared with traditional path
planning methods (e.g., [9], [15]). But the use of sophisticated numerical optimization



methods requires several necessities as, e. g., the proper description of the dynamic behavior
of the robot as an n-body system (in minimal coordinates, e.g., the relative angles ¢ =

(q1,---,4,)T between successive joints of the robot)
M(q(t)) - (t) = u(t) +x(q(t),q(t)), te€[0,t], (1)
where u = (uy(t),- .., u,(t))7 is the torque control, M is the positive definite and symmetric

(n x n)-matrix of moments of inertia and x are the moments resulting from centrifugal,
coriolis, gravitational and frictional forces. Thus the first basic problem is the modelling of
the dynamic system (1) of the robot [16]. The identification of unknown dynamic param-
eters of the specific robot (as, e.g., moments of inertia or friction parameters) is a second
must (see problem P2). Once the dynamic equations have been modelled and determined
in a proper way, the optimization of trajectories can be investigated. Different tasks for
robots require different objectives for optimal trajectories, e. g., in welding optimal tracking
of the prescribed path might be required. Otherwise if only the initial and the final posi-
tion of the robot are prescribed a fast point-to-point movement might be requested. It has
been demonstrated that the fastest point-to-point motion (¢; — min!) exhibits quite often
a surprisingly structure, impacts enormous stress on the links and can even often not be
realized in practice. Here, fast minimum energy motions (fy’ ¥, u2(¢) dt — min!) offer a
compromise between time and stress [15]. The robot trajectories also have to satisfy several
constraints as, e.,g., constraints on the controls, the angles and the angular velocities. Fur-
ther constraints result from the geometrical design of the robot’s working cell and require
an efficient modelling of collision avoidance.

P2. Parameter identification in robotic and vehicle dynamics
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Figure 2: An example of parameter identification in vehicle dynamics.

The dynamic behavior of robots or vehicles can be described as multibody systems (after
an index reduction) by

y(t) = [t y(t),u(®),p), t €[0,1], % h U1
0 = g(ty(®),ult),p), y=| + |, f=| ¢ |[u=| ¢ |, (2

0 = r(y(O),u(O),y(l),u(l),p), Yn, f’ny Un,,
g=1(91,---,9,,)". For a sufficiently accurate simulation of the real system the knowledge of

specific data is required as, e. g., for robots the moments of inertia and friction parameters,
and for vehicles the damping coefficients.



Within a controlled experiment functions h;, i = 1,...,ny,, of the state variables (and also
the input functions of the system) are measured at discrete t;, j =1,...,1,

Zij Zz( )—h( (]),u(tj),p)—l—eiyj,iEIjC{l,...,nh},0§t1<t2<...<tl§1, (3)

where ¢; ; is the (unknown) measurement error. The task is to estimate p in such a way
that the experiment that is simulated by a numerical integration of (2) does optimally fit
the measurements. As a criterion for optimality the weighted nonlinear least squares
objective

o(p, y(0), u

o)= 3 Luzhltyl)u)p)

5 — min ! (4)
i€, j=1,0l Wi j p,y(0),u(0)

with w; ; = const. can be used, where (y(t), u(t)) is the solution of (2) for the parameters p
and the initial values y(0), «(0) that might be unknown, too.

P3. Optimum design of high frequent oscillators with minimized phase noise
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Figure 3: Equivalent circult of the oscﬂlator to be optimized [1].
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A low phase noise is besides the signal properties essential to the design of oscillating
electrical circuits. A new and general method to minimize the single-sideband phase noise
of free running oscillators reduces the phase noise without requiring additional elements or
the manufacture of prototypes. It is based on the description of the signal and noise behavior
of an oscillator circuit by the Langevin equations

x(t) = f(x(t),£),y(t) = £(x(t)) + G(x(t)) - £(t) +g(x(t)) - y(t) + O,y &y), (5)

)
G() = FEOEOID g = T

where x are the state variables of the circuit, € are the white noise sources and y is a nonlinear
f~* noise source denoting the baseband noise. The notation f(x) := f(x,0,0) is used. The
terms of order O(£%, 42 €y) are neglected. The single-sideband phase noise L(f,) can be
simulated by solving (5) with a perturbation theory [8]

L(fm) = J;?ZB "W (6)

with Afus = 3wz / G (x(£))T(x () G (x () v(x(t))dt



1 [To T
and g0 = 7 /0 v(x) g (x)dt.

The first term on the right hand side of Eq. (6) describes the phase noise caused by the
white noise sources. v(x(t)) is the left-sided eigenvector of the fundamental matrix ¥ (7, 0).
The matrix I' denotes the correlation matrix of the white noise sources. The second term
of Eq. (6) describes the phase noise caused by the baseband noise. g, is a coefficient
that characterizes the upconversion of the baseband noise to the carrier frequency. The
modulation of the f~¢ noise source due to the oscillation is taken into account as well as the
upconversion of the baseband noise caused by the nonlinearities in the circuit. The factor ¢
is derived from baseband noise measurements. The functions x(¢) and v(¢) depend on the
design parameters p of the circuit by the system of nonlinear differential equations

x(t) = f(x(t),p), (7)
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and appropriate boundary conditions. The minimization of the phase noise L(f,,) with
respect to the design parameters p and subject to Egs. (7) and (8) is an optimal control
problem with p as control from a finite dimensional control space and x and v as state
variables of the optimal control problem. The optimization problem is solved numerically
by the direct collocation method [1], [14].

In an experiment the method is applied to minimize the single-sideband phase noise of a
planar integrated free running microwave oscillator at 15 GHz [1]. The equivalent circuit of
the oscillator is depicted in Fig. 3. In this special case, five design parameters of the linear
network are optimized subject to a system of 20 highly nonlinear differential equations
(7), (8). A prototype of the new designed oscillator has been manufactured. A reduction
of 10 dB of the phase noise caused by the upconverted baseband noise is measured at a
frequence deviation of 10 kHz [1].

Numerical methods for parameter identification and optimal control

Methods for the solution of optimal control problems are the recently developed and imple-
mented direct collocation and direct shooting methods (cf. [3], [6], [13], [14]). These methods
have shown to be efficient, reliable and robust in solving real-life problems. If very high ac-
curaccy is required then the indirect multiple shooting method is the choice [4]. A survey of
efficient methods is given in [11].

Efficient methods for the solution of the mentioned parameter identification problems are
based on multiple shooting in combination with generalized Gauss-Newton- or adapted SQP-
methods (cf. [2], [7]). These identification algorithms only require some functions of the
states y(¢) and no derivatives to be measured in order to identify the unknown parameters
p. In other widely used approaches it is necessary to measure not only the first but also the
second time derivatives of the state variables y(¢). As this is often not practicable, artifical
measurements of time derivatives have to be constructed.

The proposed methods for identification and optimal control use the same dynamic model.
They can therefore be conviently used in combination.
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