
Obtaining Minimum Energy Biped Walking Gaits with SymboliModels and Numerial Optimal ControlM. Hardt1 K. Kreutz-Delgado2 J.W. Helton3 O. von Stryk11 Zentrum Mathematik, Tehn. Univ. M�unhen, D-80290 M�unhen, Germany2 Dept. of Ele. Eng., UCSD, 9500 Gilman Dr., La Jolla, CA 92093-0407, U.S.A.3 Dept. of Math., UCSD, 9500 Gilman Dr., La Jolla, CA 92093-0112, U.S.A.We disuss our solution to the problem of generating symmetri, periodi gaits for a 5-link bipedrobot. We seek to approximate natural motion through the minimization of its injeted energy.Our model stands out in that we onsider the omplete nonlinear dynamial model for the robotmoving in the sagittal plane of forward motion. Both phases of walking, the swing and double-support phases, are expliitly modeled, inluding the ontat and ollision e�ets harateristi ofeah phase. A large number of onstraints involving the ontat fores, onditions for periodiity,and the range of motion must be onsidered whih ensure the validity of the alulated motion. Thesolution of this omplex problem was made possible through the use of various symboli, dynamialalgorithms relating to multibody systems in ombination with powerful numerial optimal ontrolsoftware. Reent improvements in both areas have also further inreased the potential to treat evenmore omplex biped models. The symboli nature of the reursive multibody algorithms, used forevaluating the dynamis and inuenes of ontat and ollision, failitate any hanges made to thenumber of limbs, points of atuation, or to the mass and inertia properties of the system. Thisexibility allows one to readily treat many di�erent ases suh as the underatuated ase whenno ankle torques are allowed, and the introdution of impulsive fores for ontrol purposes. Theminimum energy walking problem beomes a path planning problem on a 14-dimensional statespae with saturation and algebrai onstraints on the state variables. The solution will satisfya Hamilton-Jaobi-Bellman type equation along the optimal path. The optimal ontrol softwareDIRCOL may solve suh multi-phase problems with various forms of onstraints, and it handleswell the high degree of nonlinearity and dimensionality found in our problem. A newly availableversion of this software has also provided a substantial derease in the required omputing time forgenerating solutions. We disuss these and other improvements to our solution approah in thispaper.1 IntrodutionModeling and understanding the seemingly simple proess of human walking remains as one ofthe more diÆult researh problems in multibody systems and robotis due to its omplexityand high dimension. There are many variations of walking in humans, though we will onernourselves only with the periodi motion assoiated with moving at a onstant average speedon a at surfae. Due to the omplexity of the problem, ompromising simplifying modelingassumptions were often made in previous work to make it more tratable. Even a simple 5-link biped robot with all rotational joints and full motion degrees of freedom will have a 14dimensional state spae when represented with respet to generalized oordinates. One alsoenounters a di�erential-algebrai system when ontat onstraints of the leg with the groundare onsidered.A very thorough investigation into minimum energy walking with numerial methods wasundertaken early on in [2℄ using a highly simpli�ed model whih resulted in a 2-link manipu-lator. The idea of searhing for a passive walking motion whih an approximate better theminimum energy motion witnessed in humans was also expressed in the work of MGeer [9℄ andlater with Goswami et al. [5℄. The minimum energy path is desirable for it exhibits stabilizing,attrative properties. Our experiments have shown that many walking trajetories, naivelyhosen to approximate walking motion, an require a huge inrease in energy over that of the1



optimally alulated minimum energy motion. Other reent work also investigating minimumenergy motion with simpli�ed models may be found in [11℄. Very interesting walking mahineswere onstruted by MGeer [9℄ and also by Kajita [8℄. Kajita modeled the biped dynamis asan inverted pendulum with point masses whose simpliity fored an interesting and unusualonstrution of the biped.To properly model walking, one should onsider expliitly both phases of walking. The�rst phase has one leg in ontat, while in the shorter seond phase both legs are in ontatwith the ground. The diÆulty with this perspetive, however, is that one is faed with adi�erential-algebrai system with a varying number of algebrai onstraints. The ollision ofthe leg with the ground results in jump onditions on the veloities while there also existssaturation onstraints on the state variables and the atuators.In this paper, we explain how our numerial approah is able to produe solutions whihsatisfy these and other onstraints. The �rst step towards reduing the omplexity of theproblem was made in modeling the dynamial system very eÆiently using reently developedreursive, symboli algorithms [6℄. This allows one to hange the model \easily" and to greatlyspeed (the very many) funtion evaluations whih our in running an optimization ode (oreven a simulation). This is desribed in [6℄ and in this paper we briey sketh how reursivesymboli dynamis are used on the biped.Another important step was the reation of a redued dynamis algorithm for evaluatingthe unonstrained redued-dimensional dynamis of the biped whih aount for the ontatonstraints [7℄. This makes it possible to integrate in time the redued system rather thanthe full di�erential-algebrai dynamial system. This algorithm was �rst presented in thedesription of this work found in [7℄.The last omponent of our solution approah involves the use of powerful numerial optimalontrol software (DIRCOL) [14, 15, 16℄. This reently developed software an handle ontrolproblems of high dimension with many forms of onstraints. We desribe how we suessfullyapply these alulational tools to our problem. Our desription inludes oordinate seletionswhih proved essential for ours and possibly for other numerial approahes, see Setion 3.5.We also indiate numerial experiene with the use of DIRCOL in Setion 5.1.We �nally disuss our experimental �ndings and ompare a few of them to medial �ndingson humans. Noteworthy are:� Minimum energy walk for biped model (without expliit modeling of the feet) has a muhslower walk than the optimal human walk.� The optimal model walk has shorter steps than the optimal human walk; however, steplength omparisons with the human walk are diÆult beause our model has no feet. These�ndings suggest an area for future work.� The urve \energy of optimal walk (resp. optimal step length) vs average forward velo-ity," whih we obtained numerially, has the same qualitative shape as the hyperboli (resp.linearly) relationship linially observed in humans.In an attempt to add atuation whih might resemble the ation of feet we inluded twofores. First we allowed an additional lifto� fore whih ats as an impulse direted upward onthe bottom of the swing leg when it lifts o� of the ground. This resembles the upward thrustimparted by the foot at lifto�. Seondly, we allowed ankle torques at the point of ontat ofthe legs with the ground.In the disussion of our numerial experiments, we studied many di�erent model variationsand present here a few of them. For example, we turn the lifto� impulse and ankle torques onand o�. Other parameters whih are varied are the biped's step length, the time of one step,and the proportion of time orresponding to the ontat phase. We also disuss the e�et ofthese parameters on the system energy. Findings on the lifto� impulse and the ankle torquesare: 2



� Impulsive lifto� fores help prevent torque saturation, smooth the walking motion, andredue the energy onsumed.� Ankle atuation smooths the walking step and distributes the required input torquesmore equally among the hip, the knee, and the ankle.Preliminary results for the solution of this problem were �rst presented in [7℄ while thewhole paper is based on [6℄.2 Human WalkingThe human walking step is omposed of two di�erent phases. The �rst phase is the swingphase or single support phase when one foot is on the ground while the other swings. Thisphase begins with the moment of lifto� and ends with the ollision of the swing foot with theground. This phase makes up the majority (80 � 90%) of the duration of the walking stepin human walking. The seond phase is alled the double support phase as both feet are onthe ground while the body is moving forward. This phase usually makes up only a small part(10� 20%) of the human walking step.

Figure 1: Walking PhasesAlso of interest are the transitions between phases. Immediately at the beginning of theswing phase is the moment of lifto�. Here, the foot is just propelling the body forward sothat the leg loses ontat with the ground. The other transition between the swing and doublesupport phases is haraterized by a ollision of the swing foot with the ground. Figure 1gives a graphial depition of our biped model �rst in the swing phase, then in the doublesupport phase.Some additional detailed de�nitions an be useful. The adene is de�ned as the numberof steps in a standard time frame (e.g. steps/min). The step length is the distane betweenthe same point on eah foot during the double support phase. The stride length, on the otherhand, is the distane traveled between two suessive foot strikes of the same foot and is equal3



to two step lengths. Eah stride is, thus, omposed of one right and one left step length. Allmeasurements given will be in meters.3 Model and Dynamis3.1 Biped ModelMany of the essential harateristis of the human walking motion may be aptured with a5-link planar biped walking in the two-dimensional sagittal plane, the vertial plane bisetingthe front of the biped. The model ontains two links for eah leg plus a large, massive torso,whih also funtions as the base of the tree-strutured multibody system. Though the motionis onstrained to the 2-dimensional vertial sagittal plane, in our experiments we model thelinks with a 3-dimensional elliptial shape and a uniform distribution of mass. The physialdata orresponding to the model used in our experiments an be found in Table 1.Table 1: Biped Model Physial DataLink Mass Length RadiusTorso 20 kg 0.72 m 0.12 mUpper Leg 7 kg 0.50 m 0.07 mLower Leg 4 kg 0.50 m 0.05 mThough feet are not inluded in our biped model, muh of their inuene may be modeled inways whih do not inrease the dimension of the system. From the ontrol perspetive, two ofthe main ontributions of the feet, when not expressly onsidering frition, are the introdutionof ankle torques and the lifto� fore produed as the heel omes o� of the ground. It is possibleto inlude ankle torques in the model by treating these as external fores inuening the tipsof eah leg at the points of ontat. Rather than modeling a lifto� fore whih lasts the entireduration of the double ontat phase, as is normally the ase with the foot, we model thelifto� fore as an instantaneous impulsive fore ourring at the moment of lifto�. This lasttehnique has ertain numerial advantages though it annot ompletely reprodue the e�etof the foot as will be shown in the reports of our numerial experiments.There are a total of 14 states, 6 ontrol variables, and 1 ontrol parameter in our ontrolproblem if an impulse lifto� fore is modeled.x1{x3 torso orientation and position in the vertial planex4{x6 torso angular and linear veloityx7,x8 angle position and veloity of leg 1 hipx9,x10 angle position and veloity of leg 1 kneex11,x12 angle position and veloity of leg 2 hipx13,x14 angle position and veloity of leg 2 kneeu1,u2 applied torque at leg 1 hip and kneeu3,u4 applied torque at leg 2 hip and kneeu5,u6 applied torque at leg 1 & 2 ankles3.2 Reursive, Symboli Dynamial AlgorithmsThe state equations of the biped walker are those of a multibody system experiening ontatfores, �� =M�1(u+ JT f � C � G) : (1)4
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Figure 2: At the beginning of phase 1 an impulse fore fimp an propel the body forward. During phase 2,both legs experiene ontat fores.In equation (1), M is the square, positive-de�nite mass-inertia matrix, C is the vetor ofCoriolis and entrifugal fores, G is a vetor of gravitational fores, u are the applied torquesat the links, J is the onstraint Jaobian, and f is the onstraint fore.Several di�erent approahes to reursive, symboli multibody algorithms were studied,ompared, and represented in a unifying formalism in [6℄. This work also inluded the extensionof several algorithms to multiple degree of freedom joints and tree-strutured systems. Theapproah is based on deomposing the dynamial quantities into physial, matrix operators.The various link operations are staked into larger, matrix operators whih, in turn, provide avery lean notation whih an easily be manipulated for estimation and ontrol design purposes.For high dimensions, reursive, symboli dynamial models are more eÆient for alulatingthe forward dynamis than other non-reursive proedures whih require onstruting andinverting the entire mass-inertia matrix,M.3.3 Contat and Redued DynamisSpeial reursive algorithms have also been developed to determine the ontat fores expe-riened by the biped under ontat and the resulting generalized aelerations �� whih areprodued. See Appendix 1, also see [7℄ and the referenes found therein.An important omponent of our dynamial modeling whih also ontributed to our abilityto solve this problem was the development of a Redued Dynamis Algorithm whih makesuse of the Contat Algorithm and whih is more fully desribed in Appendix 2. Beauseof the ontat onstraints, we are faed with a di�erential-algebrai system. Two oursesof ations are possible when it is neessary to integrate the dynamis, one being the use ofspeially tailored integration routines whih often require the partial derivatives of the variousontat onstraints. The preferable approah, however, is to use a redued unonstrained setof dynamis whih evolve on the onstraint manifold. Then it is possible to use standardintegration proedures. This latter approah is the one we take.5



In the �rst phase of the biped motion, where one leg is swinging, the ontat onstraintsredue the total degrees of freedom from 7 to 5. Thus, using the Redued Dynamis Algorithm,an unonstrained 10-dimensional state spae an represent the system during this period in-stead of the full 14 dimensions for the ompletely free system. The remaining 4 states and theirtime derivatives an be determined from the 10 independent states and their time derivatives.Similarly in the shorter seond phase, when both feet are in ontat with the ground, ontatonstraints allows us to work with a system with only a 6-dimensional state spae.3.4 Collision and Impulsive ForesClosely related to the Contat Algorithm is the Collision Algorithm. This algorithm alulatesthe disontinuous jump in generalized veloities resulting from inelasti ollisions of the multi-body system with its environment. We model the ollision of the swing leg as it makes ontatwith the ground in this manner. The reursive algorithm determines �rst the instantaneousimpulsive fore experiened by the system, then propagates it throughout all the links of themultibody system.In several of our experiments, we introdue an impulsive fore along the axis of the legabout to lift o� of the ground thereby aiding the biped in maintaining its forward momentum.The Collision Algorithm an also be used to determine the resulting jump in the generalizedveloities. The magnitude of the impulsive fore beomes an additional ontrol parameterwhih must be inluded into the energy riteria to be disussed in Setion 4. Figure 2displays both the inuene of the ontat fores on the biped model and the introdution ofan impulsive lifto� fore.3.5 Box Constraints and Polar Position CoordinatesMagnitude onstraints on the state, ontrol, and parameter variables, suh as those arising fromsaturation onstraints, translate mathematially to simple inequality onstraints on individualvariables. Suh onstraints are typially alled box onstraints. Numerially, these usually arethe most tratable type of inequality onstraints, making it preferable to put onstraints inbox form whenever possible. Muh worse are inequality onstraints on nonlinear funtions ofthe states, ontrols, and parameters.It is desirable to �nd, if possible, a hange of oordinates to reformulate a nonlinear in-equality onstraint as a simple box onstraint with a di�erent set of variables. This simple trikturns out to be very important for dealing with a key onstraint in our biped motion problem,namely, that the length of the leg on the ground and the hip height are ompatible. In Cartesianoordinates, this translates to a nonlinear inequality onstraint whih, if implemented diretly,has numerially unpleasant onsequenes. Indeed, we were unable to solve biped optimal pathplanning problems until we realized that by using polar oordinates the hip vs. leg lengthonstraint beomes equivalent to a olletion of box onstraints.We give here more details on this and other box onstriants. Reall that there exist twoposition variables desribing the x and y position oordinates for the torso and, onsequently,the entire biped robot. These position oordinates are represented in the loal torso oordinatesystem. The nonlinear inequality onstraints whih we mentioned above is that the hip remainat a distane from the origin no greater than the length of an extended leg. This requirementa�ets leg 1 whih supports the body during the swing phase. With the use of the ReduedDynamis Algorithm, the position and veloity variables for leg 1 are not part of the stateused in the optimization proess. Their values must be alulated via inverse kinematis andthe Collision Algorithm every time the dynamis need to be evaluated. If the hip is too farfrom the origin, then we will not have suÆient information to determine the state of leg 16



plus the system will have entered a free-ying on�guration during phase 1 or a single-supporton�guration during the double support phase. By onverting the x; y oordinates to polaroordinates r and �, it is then possible to plae a simple magnitude onstraint on r whih willserve the same funtion as the nonlinear inequality onstraint previously mentioned.Additional box onstraints on the state variables orrespond to ensuring a sensible rangeof motion for the robot suh as that the knee may not bend bakwards. We plae magnitudebox onstraints as well on the applied torques at the hip, knee, and ankle. We will desribe inthe experiment setion how these onstraints beome ative while moving at higher veloitiesand how impulsive lifto� fore an partially remedy the problem. The bounds we plae on theankle torques are only half of those at the hip and knees.3.6 Boundary ConstraintsAs we are solving a �nite-time problem, the boundary onstraints of the biped walking problemrepresent an important part of the problem de�nition. We allow a number of parameters tobe variable. These are as follows:p1 = step length (meters)p2 = magnitude of lifto� impulsive forep3 = time of ollision (seonds)p4 = average forward veloity (meters/min)At the initial and �nal time, periodiity of the states and ontrols must be enfored while inbetween phases ontinuity is enfored. Another boundary onstraint is that if an impulsivelifto� fore is inluded at the beginning of phase 1, then the veloities must reet the suddenjump aused by the impulsive fore. Given the magnitude of the impulsive fore p2, theCollision Algorithm an determine the resulting new veloities for the beginning of phase 1.A further boundary onstraint is the swing leg must also land at the time of ollision, p3, at astep size equal to p1. Sine in our experiments we onstrain the proportion of phase 1 to 85%of the total time of the walking step, the �nal or total time (also variable) may be determinedfrom the phase 1 duration p3.3.7 Nonlinear Inequality ContraintsThere are several onstraints whih must be enfored along the duration of the walking step.First, we must ensure that the swing leg always remain above ground while in motion duringphase 1. This involves a series of simple kinemati alulations. Additionally, we require thatthe vertial omponent of the ontat fores in eah phase remain positive so that there is nota premature lifto� of the leg from the ground. If this omponent does not remain positive andwe are still onstraining the leg to be in ontat, then the on�guration will not make sense.These ontat onstraints do require a signi�ant amount of omputation in order to eval-uate them, and we have determined them to be neessary as they an easily be violated ifthey are left out. In fat, the neessity of these onstraints inspired us to begin working witha more omplex tree-strutured model with the torso as the base of the biped and full posi-tional degrees of freedom in the plane. A simpler model would take the foot whih is alwaysin ontat with the ground during one step to be the base. Several investigators take thisapproah in their handling of the problem, but this prevents the veri�ation of the ontatfore inequalities. 7



4 Minimum Energy PerformaneExperiments have shown humans to walk in an energy eÆient manner. In [10℄, a detailedstudy is presented of energy expenditure in atual human walking where researhers haveexplored the relationships whih exist between real energy data and human walking motion.A simple yet fairly aurate relationship is one in whih the energy expended is quadrati inthe forward veloity, Ew = 32 + 0:005v2 : (2)Here v is the average forward veloity inm/min andEm is the energy requirement in al/kg/minfor the average human subjet. An often more desirable set of units for walking energy is tomeasure it per distane traveled (m = meters) rather than per time elapsed (min = minutes)sine this onveys more the notion of energy eonomy. We denote this form of energy as Em.Its units are al/kg/m, and it is related to Ew and the previous relationship byEm = Ewv = 32v + 0:005v : (3)This funtion will now have a hyperboli shape. This and most other funtional relationshipssuh as (3) indiate a minimum energy motion of an 80 m/min walking veloity with an energyexpenditure of 0.8 al/kg/m. The experiments also show average adenes of 105 steps/minand an average step length of 0.75 m for an adult male.In our study, we shall minimize a quantity proportional to the injeted energy into thesystem, the integral of the applied torques,J = �Z T10 uTu dt+ Z TT1 uTu dt�=step length ; (4)where T1 is the time at the end of the �rst phase (swing phase), and T is the time at the endof the seond phase (double-ontat phase). Dividing by the step length, the distane betweensuessive heel strikes, gives the expended energy per meter traveled. If an impulsive fore isadded, then this ontrol parameter will also be added into the performane,J=�Z T10 uTu dt+Z TT1 uTu dt+ u2imp�=step length: (5)This general form of minimal energy performane was also used in [11℄.The performane J is not a measure of the mehanial work performed on the system, andwe are unable to determine the hange in energy of the body from J . In fat, for our bipedmodel, we are minimizing a quantity proportional to the energy required for a motion. Inhumans, this is analogous to the di�erene between mehanial energy and metaboli energy.As no system, not even a human, is perfetly eÆient, these quantities will di�er and theirrelationship in humans still remains a very diÆult and unanswered problem [10℄. In robotis,we do not have metaboli energy, but for a simple atuation model, our approah amounts tominimizing the energy required for diret drive motors at the joints to produe the requiredtorques. This approah provides a more numerially tratable way of reahing our performaneobjetives.5 Numerial Optimal ControlDiret optimization methods for optimal ontrol are haraterized by the minimization of aost funtional whih is a funtion of the system state and the ontrol input u. An example8



of suh a method is the program DIRCOL [14, 15, 16℄, whih an handle impliit or expliitboundary onditions, arbitrary nonlinear equality and inequality onstraints on the state vari-ables, and multiple phases where eah phase may ontain a di�erent set of state equations.DIRCOL funtions by pakaging the optimal ontrol problem along with its onstraints intoa onstrained, nonlinear minimization problem whih is solved by an SQP-based optimizationode NPSOL [3℄, or SNOPT [4℄ whih takes advantage of sparsity.The output of the numerial optimal ontrol program will be the optimal open-loop solutionfor the ontrol u(t) and the orresponding state trajetory x(t) at the hoie of grid pointsin time. DIRCOL disretizes the state and ontrol variables in time over the trajetory. The�neness or oarseness of the disretization an have a large inuene over the time required togenerate a solution. The reently released DIRCOL 2.0 using sparse optimization tehniqueshas shown itself to be faster and more robust.As previously mentioned, there are a total of 14 states, 6 ontrol variables, and 1 ontrolparameter in our ontrol problem. All of these quantities have magnitude saturation boundsplaed upon them in the optimization proess, though the majority never beome ative.The ontrol saturations are the most important as in many experiments these will saturate,partiularly at higher speeds. The bounds on the ankle torques are also smaller than those atthe other joints, as the ankles annot provide as great a fore as the hips and knees an.In addition to magnitude onstraints, there are expliit onstraints on the initial and �nalstate of eah phase whih assign those onstrained states and ontrols a �xed value whihmay depend on other known values. These are alled expliit boundary onditions, whileimpliit boundary onditions are those for whih the states and ontrols must satisfy a nonlinearalgebrai equation. Finally, we have nonlinear inequality onstraints whih must be satis�edby the states and ontrols along the duration of the walking step. The onstraints outlined inSetion 3.6 result in a total of:Expliit boundary onditions at initial and �nal time: 13Expliit boundary onditions in between phases: 17Impliit boundary onditions at initial and �nal time: 7Impliit boundary onditions in between phases: 3Nonlinear Inequality Constraints in phase 1: 2Nonlinear Inequality Constraints in phase 2: 35.1 Optimization TrialsThe high degree of nonlinearity and high dimension of the problem, along with all the on-straints, make it unreasonable to assume that by speifying the state equations, boundaryonditions, and inequality onstraints together with a naive initial guess of the solution, theoptimization proedure will immediately �nd an optimal solution. Various simpler problemswere �rst solved suh as that of standing in plae and then moving only small distanes. Infat, an iterated proess was undertaken whih gradually approximated the atual problem,whereby the solution of eah generalization of the problem was made using the previous oneas an initialization.For most trial runs, we used 13 grid points in time, 8 in the �rst phase and 5 in the seondphase. As the number of grid points has a large inuene on the length of eah optimizationrun, it is preferable to use a oarse grid, then to re�ne the grid if more exat solutions areneeded. Run times depend on the starting values given to the problem and the problem to besolved. 9



DIRCOL transforms the omplete problem to a nonlinear optimization problem with 197variables, 131 nonlinear equality onstraints, and 23 inequality onstraints. The number offuntion alls during a sample optimization run are:DIRCOL Version 1.2 2.0Optimization Program NPSOL SNOPTFuntion CallsState equations 568635 230952Impliit Boundary Const. 43430 8497Nonlinear Ineq. Const. 249928 125099Run Time 18 min. 12 min.These runs were onduted on a Spar Ultra 2 with a 166 MHz proessor. The advantageof DIRCOL 2.0 over DIRCOL 1.2 in solving a partiular problem was, in fat, muh greaterthan the statistis above indiated. This is beause several subproblems would often have tobe solved with DIRCOL 1.2 before the omplete problem ould be solved. For example, asubproblem would be solved without enforing positivity of the ontat onstraints, then theomplete problem ould be solved by initializing it on the solution of the subproblem. DIRCOL2.0 would usually not require this 2-stage solution proess as its domain of onvergene is larger,thus saving muh time.6 Optimal Walking ExperimentsTwo main ategorizations an be made in that we explore �rst walking without any form of liftpropulsion. We then add to our biped the possibility of introduing an instantaneous impulsivefore at the moment of lifto� to help the body move forward. In both settings, the additionale�et of using ankle torques is investigated so that we ompare all together 4 distint ases.Lifto� impulses and ankle torques both help ompensate for the absene of a foot in our bipedmodel.6.1 Optimal Forward Veloities vs. EnergyWhen energy is onsidered in terms of (al/kg/m), as in Setion 4 then the equationEm = 32v + 0:005 v (6)has been shown experimentally to roughly model the relationship witnessed in humans be-tween required energy Em and the average forward walking veloity v [10℄. This hyperbolirelationship has an energy minimizing walking veloity of 80 m/min. Figure 3 displays therelationship that we enounter in our experiments whih, while reasonably hyperboli, has amuh lower energy minimizing veloity of approximately 12 m/min. A possible onjeture forthe disparity with optimal human walking is the lak of the foot e�et whih provides essen-tially an extension of the leg when the bak heel lifts o� of the ground propelling the bodyforward and reduing the e�ets of ollision.Figure 3 also ompares optimal walking with and without impulsive lifto� fores. Thedashdot and dotted lines in indiate the energy relationship for walking with an impulsivelifto� fore. A signi�ant energy savings is obtained over walking without suh a lifto� fore(solid and dashed lines), though there is no notieable hange to the optimal walking speed.The e�et of ankle torques, whih is also displayed, is small.10
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Figure 5: Optimal trajetories of hip horizontal position and veloityfor walking with lifto� fores. Walk Speed: 12 m/min. No ankletorques (dashed); with ankle torques (solid). Walk Speed: 50 m/min.No ankle torques (dotted); with ankle torques (dashdot).
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Figure 6: Optimal trajetories of hip and knee vertial positions forwalking with lifto� fores. Walk Speed: 12 m/min. No ankle torques(dashed); with ankle torques (solid). Walk Speed: 50 m/min. Noankle torques (dotted); with ankle torques (dashdot).Sine the biped has no foot, how step length should be ompared to that of a human is notlear.6.3 Forward Veloities and CollisionsWe display in Figure 5 the hip horizontal displaement and hip forward veloity for a om-plete, periodi, double step with an impulsive lifto� fore. In order that the various walkingtrajetories may be more easily ompared, we plot on the horizontal axis the normalized time12



for a step (normalized so that the �nal time for every step is 1). The stik walking �gures onthe top portion of the �gure indiate for the two plots beneath it whih part of the walkingstep the plotted points orrespond to. The plots begin with the swing leg leaving the ground,and ends with the same leg about to leave the ground one again.The solid (with ankle torques) and dashed (without ankles) lines indiate optimal walkingsolutions. The dashdot (with ankles) and dotted (without ankles) have an additional parameter�xed whih is that of the average forward veloity set at a muh faster 50 m/min. The �rstvertial line indiates the moment of ollision, the seond line is the time when the seond stepbegins with the other leg lifting o� the ground, and the last line is one again a ollision of theswing leg with the ground.From the veloity plot at the bottom of Figure 5 we see the biped loses a onsiderableamount of forward veloity at the moment of ollision, in partiular for the faster walkingspeed. The faster walking speed serves to exaggerate the overall e�ets as it is also moreapparent that the biped needs to slow down quite a bit near the middle of the swing phaserather being able to maintain a more onstant forward veloity. With the inlusion of a lifto�fore, our experiments have shown that we are able to obtain more onsistent forward motionand the large variation evident in the veloity plot is substantially redued over the ase whenlifto� fores are not inluded. We speulate that without the expliit modeling of the foot, thebiped annot eÆiently operate at higher speeds.We may observe the vertial movement of the hip and knee in Figure 6. The height of thehip and knees stays roughly at the same level during the slower 12m/min globally optimal walkwhile during faster walks, the well-known sinusoidal motion e�et of the hip is more apparent[10℄.6.4 Walking with and without Lifto� ForesFigures 7 and 8 display the optimal applied torques for the model with and without impulsivelifto� fores from the same set of experiments as the previous setion. Inluding an impulsivelifto� fore is an easy way of modeling the same e�ets as having a foot. The solid and dashedlines indiate the torques for the optimal walking motion for the model with and without ankleatuation respetively. There is a notable di�erene between the 12 m/min (globally optimal)and the 50 m/min walk. It is evident that the torques for the faster walk reah the magnitudeonstraints plaed upon them several times. The torque saturations an be greatly reduedwith the introdution of an impulsive lifto� fore. These torques (and their rates) are of muhsmaller magnitude showing the bene�ial e�et this additional ontrol parameter has.For a given veloity, it is diÆult to distinguish the di�erene between inluding and notinluding ankle atuation. The di�erene only beomes visible at the higher forward veloitywhen during the seond phase a slightly smoother and smaller torque atuation is required forthe hip and knee. An interesting e�et witnessed in our experiments is that the knee omesmore into use with ankle atuation. As a result, the torque inputs and assoiated ost ininjeted energy will be more equally distributed through the di�erent joints of the biped.7 ConlusionOur investigation into the generation of minimum energy symmetri, periodi gaits gatherstogether several di�erent researh areas in the modeling and ontrol of omplex, nonlinearsystems. Our ability to solve this problem has relied upon the use of reursive, symbolimultibody algorithms oupled with powerful numerial optimal ontrol software. Some of themore interesting onlusions that an be made from our experiments are:13
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Figure 7: Optimal applied torques for walking without lifto� fores.Walk Speed: 12 m/min. No ankle torques (dashed); with ankletorques (solid). Walk Speed: 50 m/min. No ankle torques (dotted);with ankle torques (dashdot).
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Figure 8: Optimal applied torques for walking with lifto� fores.Walk Speed: 12 m/min. No ankle torques (dashed); with ankletorques (solid). Walk Speed: 50 m/min. No ankle torques (dotted);with ankle torques (dashdot).� Minimum energy walk for biped model (without expliit modeling of the feet) has a muhslower walk than optimal human walk.� The optimal model walk has shorter steps than optimal human walk, however the notionof step length is problematial sine the model has no feet.14



� Impulsive lifto� fores help prevent torque saturation, smooth the walking motion, andredue the energy onsumed.� Ankle atuation smooths the walking step and distributes the input torques more equallyamong the hip, the knee, and the ankle.� Using polar oordinates as in Setion 3.5 to onvert leg vs hip geometri onstraints tobox onstraints was ritial to numerial suess.1 Appendix: Contat and Collision AlgorithmsWe give now a brief summary of the Contat and Collision Algorithms. If the tip ontatonstraint (free foot touhing the ground) is given holonomially as (�) = 0, then by takingtime derivatives we also obtain J _� = 0 (7)J�� + _J _� = 0 : (8)where J = �=��. Multiplying (1) by J and substituting for J�� using (8), one obtains anoperator expression for f.f = (JM�1JT )�1[�JM�1(u� C � G)� _J _�℄= ��(J��f + _J _�) ;= ��Q _V : (9)��1 = (JM�1JT ) is a square matrix of dimension equal to the number of onstraints, andit is a quantity related to the Khatib operational spae inertia. ��f are the free generalizedaelerations without the inuene of the ontat fore in the dynamis. The �nal expressionfor f is expressed in terms of the onstrained omponents of the spatial aeleration _V, whereQ _V = d=dt(QV) = d=dt(J _�). The quantity V likewise is omposed of the onstrainedomponents of the linear and angular veloities for the various links in the multibody system.The true angle aelerations are the sum of ��f and a orretion term ��Æ whih results fromthe ontat fores propagating throughout the body. These orretion aelerations an bealulated from f by the relationship ��Æ =M�1JT f : (10)A very similar algorithm exists for alulating the hange in veloities due to an inelastiollision with the ground. The hange in the generalized veloities will depend on the leg tipveloities at the moment of ontat with the ground, QV. One solves for the impulse forefimp, fimp = ��QV : (11)One may solve for _�Æ in _�Æ = M�1JT fimp to obtain the generalized veloities after ollision_�+ = _�� + _�Æ. The Contat and Collision Algorithms are disussed at greater length in[1℄, while reursive algorithms for the expliit alulation of the previously de�ned quantitiesin general tree-strutured multibody systems are presented in [6℄.15



2 Appendix: Redued Dynamis AlgorithmWith the introdution of holonomi onstraints, suh as the ontat of legs with the ground,it is possible to onstrut a set of redued unonstrained dynamis of dimension equal tothe number of degrees of freedom, N , minus the number of onstraints, m. In this setion, weoutline our approah to alulating the independent generalized aelerations of the redued setof dynamis. The novelty of this approah is that it does not require the expliit onstrutionof the redued dynamis. It will be shown how one may extrat the solution of the redueddynamis from the solution of the Contat Algorithm and the solution of the forward dynamisof the entire system. One main advantage of using a redued unonstrained dynamial modelis that optimization programs whih require integration of the dynamis will enounter lessnumerial diÆulties.In order to satisfy the onstraint ondition (7), the generalized veloities _� must belong tothe null spae of the onstraint Jaobian, N (J) � RN�m. If the olumns of X represents abasis for N (J), then there exists a representation of _� with respet to X denoted here by �,_� = X�. Substituting �� = X _� + _X� into the dynamial equations and multiplying on the leftby XT will give us the redued dynamis,M� _� + C� + G� = u� ; (12)whereM� = XTMX , C� = XTM _X� +XTC, G� = XTG, and u� = XTu.If � represents the generalized oordinates of the system, then it is possible to hooseN�mindependent oordinates �1 and m dependent oordinates �2 suh that J;1 _�1+J;2 _�2 = 0 maybe used as an alternative expression for (7). This approah was made in [12℄, and it leads toan obvious hoie for X , _� = X� = X0 _�1 = � I�J�1;2 J;1 � _�1 : (13)An advantage of making this hoie for the basisX is that, as will be shown in theReduedDynamis Algorithm, the redued aelerations are simply represented as _� = ��1. Our goalhere is to show that the solution of the ontat algorithm may be used to obtain a solution ofthe redued forward dynamis problem. Then an optimization routine performing numerialintegration need only integrate on the independent oordinates ��1. We �rst give a lemmabefore the algorithm is presented.Lemma 1 Let X be a basis for the null spae of the onstraint Jaobian, N (J), and assumethat at time t = 0, the state (�; _�) satis�es the onstraint onditions (�(0)) = 0, J _�(0) = 0.Then the following statements are equivalent:(a) _� and �� satisfy J�� + _J _� = 0.(b) There exists an N �m dimensional vetor � whih satis�es _� = X�.() X _� = �� � _X� is onsistent and has a unique solution _�.Proof: ()) (a) Sine X is a basis for N (J), then JX� = 0 and d=dt(JX�) = 0. So,J�� + _J _� = JX _� + (J _X + _JX)� = 0 :(a) ) (b) Integrating (a) implies J _� = 0 sine J _�(0) = 0 at time t = 0. J _� = 0 furtherimplies that there exists a representation � for _� with respet to X , _� = X�. (b) ) ()Di�erentiating _� = X� and observing that X is full rank gives the desired result.Redued Dynamis Algorithm 16



(0,0)

(x,y)

θ

α

α2

1

1

2

1

a

a

−θ2

Figure 9: Inverse Kinematis Problem for 2-link Leg the bottom (x; y) is the foot �xed on the ground, whilethe top (0; 0) is the hip1. Beginning with an independent set of oordinates � = �1, solve via inverse kinematis for�2 from �1. Similarly solve for _�2 from _�1 using the algebrai relation _�2 = �J�1;2J;1 _�1.2. Given a set of torque inputs u, one may solve for �� with the ontat algorithm. Simplealgebrai manipulation shows that this solution satis�es (a) of Lemma 1.3. Using Equation (13), it follows that _� = ��1, and it satis�es the redued dynamis (12).This algorithm thus yields the redued forward dynamis mapping u! (�; _�).3 Appendix: Redued Dynamis for the BipedA key omponent of our dynamial modeling of the biped is the use of the Redued DynamisAlgorithm presented in Setion 2 of the Appendix. We have already mentioned that beauseof the ontat onstraints in phase one and in phase two of walking, we are faed with adi�erential-algebrai system. Two ourses of ations are possible when it is neessary to in-tegrate the dynamis, one being the use of speially tailored integration routines whih oftenrequire the partial derivatives of the various ontat onstraints. The preferable approah,however, is to use a redued unonstrained set of dynamis whih evolve on the onstraintmanifold. Then it is possible to use standard integration proedures.Reall that one of the primary diÆulties of the Redued Dynamis Algorithms is that theinverse kinematis must be used to solve for the dependent states. For the biped, the �rsttask is to solve for the angle whih determines the position of eah leg. This is easy sine ourproblem is equivalent to solving for the joint angles of a 2-link manipulator when its endpointsare known.The following well-known solution omes from Spong and Vidyasagar [13℄. In Figure 9 isdisplayed the inverse kinematis problem. Let �1 and �2 be the desired joint angles, a1 and a2the lengths of the upper and lower legs respetively, and �1 and �2 two intermediate angles.We assume that one end of the 2-link arm has been transferred to the origin while the otherend has oordinates (x; y). From the Law of Cosines,D = os(�2) = x2 + y2 � a21 � a222a1a2 : (14)17
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