AnyDB: An <u>Architecture-less</u> <u>DBMS</u> for Any Workload

<u>Tiemo Bang^{1,2}</u>, Norman May², Ilia Petrov³ and <u>Carsten Binnig¹</u>

¹⁾Technical University Darmstadt ²⁾ SAP SE ³⁾Reutlingen University

Hochschule Reutlingen Reutlingen University Scale-out DBMSs widely used today

Scale-out DBMSs are popular on-prem and in the cloud

Predominant scale-out DBMS Architectures

Shared-Nothing / Aggregated

Shared-Disk / Disaggregated

- <u>+ Ideally suited</u> for <u>partitionable</u> workloads
- <u>Not optimal</u> if load is nonuniform or quickly changes

- + Compute can be scaled elastically
 - + More <u>skew-tolerant</u>
 - <u>Higher latencies</u> of data access \rightarrow <u>caching needed</u>

Fate of DBMS determined by its architecture

Architecture of a DBMS is a <u>design-time decision</u> \rightarrow many characteristics statically baked into DBMSs

Designed for <u>race tracks</u>...

-

... but not for off-road!

Vision of AnyDB: An Architecture-less DBMS

Defer choice of architecture to runtime!

 \rightarrow Mimic classical architectures or form new ones (e.g., a hybrid of Shared-Nothing and Shared-Disk)

Key Idea 1: No pre-defined Componentization

DBMS is composed of generic "AnyComponents" (ACs) \rightarrow ACs can act as any DBMS component at runtime

ACs are instrumented by an **event & data stream**

Key Idea 2: Routing of Events & Data

Routing determines architecture at runtime (e.g., for OLAP)

Challenge: OLTP/Concurrency Control (CC)

Tx's can also be expressed as streams of events and data

```
Transaction X{
   Read(A);
   Write(A=A-50);
   Read(B);
   Write(B=B+50);
}
```

Transaction Y{ Read(B); Read(C);

Challenge: OLTP/Concurrency Control (CC)

Tx's can also be expressed as streams of events and data

CC by event ordering \rightarrow No distributed locking needed

Experiments: Initial Results

Results confirm opportunities of AnyDB for diverse workloads!

Summary & Future Directions

Vision of an Architecture-less DBMS: defer architectural decision to runtime

<u>Many more details</u> in the paper (e.g., efficient movement of state by pro-active data shipping called data beaming)

Future opportunities:

- Flexible routing opens up many other forms of adaption (e.g., to include heterogenous compute resources on-the-fly)
- Stateless execution of ACs is an interesting alternative to build serverless-DBMSs on top of FaaS

Thank you for your Attention!

AnyDB: An <u>Architecture-less</u> <u>DBMS</u> for Any Workload

Tiemo Bang^{1,2}, Norman May², Ilia Petrov³ and Carsten Binnig¹

¹⁾Technical University Darmstadt ²⁾ SAP SE ³⁾Reutlingen University

Challenge: Optimal Routing Decisions

Optimizer needs to determine optimal routing based on worklaod

Two directions:

- 1. Manual annotate with hints (e.g. EXECUTE ... AS SHARED NOTHING)
- **2. Automated routing** (e.g., learned approaches)

Example: Optimal Architecture \rightarrow Hybrid

Partitionable OLTP \rightarrow as Shared-Nothing