
DB4ML – An In-Memory Database Kernel
with Machine Learning Support

Matthias
Jasny∗

TU Darmstadt

Tobias Ziegler∗
TU Darmstadt

Tim Kraska
MIT

Uwe Roehm
The University of

Sydney

Carsten
Binnig

TU Darmstadt

ABSTRACT
In this paper, we revisit the question of how ML algorithms
can be best integrated into existing DBMSs to not only avoid
expensive data copies to external ML tools but also to com-
ply with regulatory reasons. The key observation is that
database transactions already provide an execution model
that allows DBMSs to efficiently mimic the execution model
of modern parallel ML algorithms. As a main contribution,
this paper presents DB4ML, an in-memory database kernel
that allows applications to implement user-defined ML al-
gorithms and efficiently run them inside a DBMS. Thereby,
the ML algorithms are implemented using a programming
model based on the idea of so called iterative transactions.
Our experimental evaluation shows that DB4ML can sup-
port user-defined ML algorithms inside a DBMS with the
efficiency of modern specialized ML engines. In contrast to
DB4ML, these engines not only need to transfer data out of
the DBMS but also hard-code the ML algorithms and thus
are not extensible.
ACM Reference Format:
Matthias Jasny, Tobias Ziegler, TimKraska, Uwe Roehm, andCarsten
Binnig. 2020. DB4ML – An In-Memory Database Kernel with Ma-
chine Learning Support. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD’20), June
14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3318464.3380575

1 INTRODUCTION
Based on a recent survey from Kaggle, relational data is the
most commonly used type of data in data science teams
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3380575

1.39ms

3.60ms

2.82s

DB4ML Galois MADLib

tim
e

Figure 1: DB4ML vs. Galois vs. MADLib (PageRank) —
Numbers are averaged over 5 runs on the Wikivote dataset.
In order to provide a fair comparison of DB4ML and Galois
(which are main-memory engines) with MADLib (which is
based on PostgreSQL) we used the maximal memory size for
the buffer pool and warmed up the buffer by scanning the
required tables.

and is typically used for building classical machine learning
models such as regression models, decision trees, or unsuper-
vised algorithms such as PageRank or clustering algorithms.1
The standard approach for applying machine learning (ML)
algorithms on relational data is to first select the relevant
entries with an SQL query and export them from the data-
base into an external ML tool. Then the ML algorithm is
run over the extracted data — outside the DBMS — using
statistical software packages or ML libraries such as R, SPSS,
or Scikit-learn.

However, this approach can impose a high overhead due to
expensive data transfers which can significantly slow down
the overall learning procedure especially if the datasets are
large. Integrating ML algorithms into DBMSs is thus an on-
going effort in both academia and industry. But performance
is not the only reason why vendors such as IBM, Microsoft,
Oracle, SAP, etc. integrate ML into a DBMS. Another major
reason is compliance (e.g., requirements from HIPAA or the
financial sector) that often discourage applications to export
any data out of a DBMS since DBMSs already provide rich
security frameworks to protect the data from unauthorized
access.2 Moreover, more recent regulations such as GDPR
enforce that an enterprise must ensure that all information

1https://www.kaggle.com/surveys/2017
2https://download.oracle.com/database/oracle-database-security-
primer.pdf

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

159

https://doi.org/10.1145/3318464.3380575
https://doi.org/10.1145/3318464.3380575

about a specific consumer to be deleted from enterprise stor-
age, when requested. Allowing applications to copy data out
of a centralized DBMS renders finding and deleting all copies
of data on a particular consumer almost impossible [15].

One prevalent approach for integrating machine learning
into a DBMS is to extend the SQL execution engine with it-
erative concepts, as proposed by [9, 11, 12], and translate the
ML algorithm into a sequence of SQL queries. A main issue
of this approach is that SQL engines only offer bulk synchro-
nous parallelism for ML algorithms; i.e., each iteration of an
ML algorithm is implemented by executing an SQL query —
potentially in parallel — over the full data set before the next
iteration can start. For example, in MADLib [12] PageRank
is implemented by using a driver program that runs one SQL
query, which computes the new PageRank values for the
next iteration for the complete graph, and repeats this until
the PageRank algorithm converges.

Unfortunately, this approach can be orders-of-magnitude
slower than modern parallel ML algorithms [30, 33, 38],
which benefit significantly from fine-grained concurrent
execution schemes with relaxed consistency models. For
example, in PageRank each node in the graph can progress in-
dependently, leading to overall faster convergence as shown
by [33]. Similar observations have been made for other ML
algorithms [30, 38].

Contributions. In this paper, we thus revisit the question
of how ML algorithms for structured data should be best
integrated into existing DBMSs. Our approach is based on
the key observation that modern in-memory database sys-
tems already support fine-grained concurrency control in
the form of transactions. Yet, traditional transaction execu-
tion schemes are often too heavyweight. Consequently, we
show how it is possible to efficiently leverage transaction
semantics also for ML algorithms. As a main contribution,
we present a new in-memory database kernel called DB4ML
that is based on transactions but adds extensions to enable
ML algorithms on top of classical transaction processing.
As a first extension to enable ML algorithms inside a

DBMS, we propose the concept of iterative transactions. Dif-
ferent from normal transactions, with iterative transactions
the very same transaction can be re-executed multiple times
until convergencewithout the need to be actively re-scheduled
for every iteration by a driver program (i.e., a client) as
done in existing approaches. Furthermore, as a second exten-
sion, we add new isolation levels for machine-learning into
DB4ML, such as bounded-staleness [7], and show how they
can be efficiently implemented based on top of an MVCC-
based storage manager that was designed for OLTP.
In order to analyze the efficiency of our approach we im-

plement the ideas of this paper in DB4ML. As Figure 1 shows,
DB4ML can not only outperform the classical approach of

integrating ML into DBMS (MADLib) but more importantly
also provides a performance comparable to modern parallel
ML algorithms implemented outside the DBMS (Galois). In
our experimental evaluation in Section 7, we show a more
detailed analysis of DB4ML for different ML algorithms and
datasets.
While we envision that the techniques implemented in

DB4ML will help to guide the design of modern in-memory
database system to support ML inside the DBMS, the tech-
niques presented in this paper are not limited to that sce-
nario: First, if data exports are not a problem, DB4ML can
also be used as a standalone ML engine since its abstractions
(iterative transactions and ML isolation levels) provide ap-
plications with ways to implement their ML algorithm in
a high-level manner and execute them in an efficient ML
runtime system without the need to hand-tune each individ-
ual ML algorithm. Second, we further believe that the tech-
niques proposed in this paper are not limited to single-node
in-memory DBMSs and can be extended towards disk-based
DBMSs or even for the distributed settings. However, show-
ing this is beyond the scope of this paper and represents an
interesting avenue of future work.
To summarize, the contributions of this paper are:
• We define a programming model for user-defined it-
erative transactions that supports a wide class of ML
algorithms and allows developers to easily integrate
new ML algorithms into a DBMS.
• We discuss the implementation of our transactional
database kernel calledDB4ML including a storage man-
ager and execution engine that can efficiently run par-
allel ML algorithms.
• We showcase through two use cases (PageRank as well
as Stochastic Gradient Descent) how ML algorithms
could be implemented inside DB4ML.
• Our experimental evaluation shows for the aforemen-
tioned use cases that DB4ML can support ML algo-
rithms with the efficiency of modern specialized ML
engines without the need to transfer data out of the
DBMS. In our evaluation, we compare DB4ML against
state-of-the-art SGD and graph-engines [26, 30, 38].

Outline. The remainder of this paper is organized as fol-
lows: The next section gives an overview of the architecture
of DB4ML as well as the proposed programming model for
user-defined iterative transactions. Section 3 and Section 4
then present our storage manager and the execution engine
of DB4ML while Section 5 discusses several optimizations
that are crucial to achieve an efficient execution of ML al-
gorithms. Afterwards, in Section 6 we demonstrate by im-
plementing two use cases (PageRank and SGD) how these
algorithms can be realized inside DB4ML with the help of
user-defined transactions. Section 7 presents the evaluation

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

160

Storage

ExecutorQueue

2. dequeue

4. re-queue
state

1. begin & enqueue

5. converged

Sub
Tx

Sub
Tx

Sub
Tx
Sub
Tx

3. execute
 validate

Uber TX

Sub
Tx

Sub
Tx

Sub
Tx…

Figure 2: High-level Architecture of DB4ML.

of DB4ML and shows that DB4ML is able to process ML algo-
rithms inside the DBMS as efficient as specialized in-memory
engines. Section 8 gives an overview of related work, and
Section 9 concludes the paper.

2 OVERVIEW
In the following, we first present the overall design of our
novel in-memory database kernel DB4ML. We then further
discuss the programming model used to implement and exe-
cute ML algorithms using DB4ML.

2.1 High-level Architecture
Figure 2 shows the high-level architecture of our database
kernel for ML called DB4ML, which consists of two main
components: an in-memory storage manager and an execu-
tor for iterative transactions. While DB4ML is based on the
design of a modern in-memory storage layer that supports
MVCC, it is not a full-fledged DBMS.
The main idea is that DB4ML implements a storage and

an execution engine that are optimized for ML while still
supporting classical OLTP workloads effectively. That way,
tables created inside DB4ML’s storage engine (called ML-
tables) can be queried and updated through classical transac-
tional workloads. This is a major difference to specialized ML
engines such as Hogwild which do not integrate well into
a DBMS architecture. Consequently, they require copying
or exporting the data instead of using the data stored inside
the DBMS directly.
In order to run an ML algorithm (e.g., PageRank) inside

DB4ML, we extend the traditional transaction execution
model of a modern in-memory DBMS to a nested transaction
model [36] with a top-level uber-transaction that initiates a
number of sub-transactions for running the ML algorithm in
parallel on ML-tables (e.g., one sub-transaction per node in
the graph). The sub-transactions are executed and resched-
uled iteratively by the executor. This design allows DB4ML
to easily parallelize the execution of the ML algorithm in a
fine-grained manner.
When starting an ML algorithm, DB4ML instantiates the

uber-transaction for the particular ML algorithm. The uber-
transaction then first instantiates multiple sub-transactions
of the same type on different parts of the data and adds those

1 enum T_Action {COMMIT ,ROLLBACK ,DONE};
2
3 interface IterativeTransaction {
4 void begin(T_State initial_state);
5 void execute ();
6 T_Action validate ();
7
8 private:
9 T_State tx_state; // local state of tx
10 };

Listing 1: Interface for Iterative Sub-Transactions.

sub-transactions to a lock-free queue for scheduling (step
1 in Figure 2). For example, in order to start a PageRank
algorithm, we start one sub-transaction for each node of the
graph to iteratively refine its PageRank.
Iterative sub-transactions are executed by DB4ML using

worker threads that are pinned to a CPU core. Whenever
a worker thread in DB4ML is idle, it fetches a new sub-
transaction from the work queue (step 2) that then updates
the learned model stored in our MVCC storage (step 3). Based
on the outcome of a sub-transaction’s execution, the sub-
transaction is either re-scheduled by the executor for the
next iteration, or dequeued as soon as it has converged (step
4 and 5 in Figure 2).

During execution, the sub-transactions can access data
in the storage layer to read/update the current state of the
computation (e.g., the current PageRank values of nodes in
the graph). As this state might be read/modified by multiple
concurrent sub-transactions,DB4ML provides isolation levels
that implement well-known ML synchronization schemes
for parallel execution on top of its MVCC-based storage as
discussed next.

2.2 Synchronization Schemes
Parallel ML algorithms typically follow a data-parallel pat-
tern, where workers independently run the learning algo-
rithms for subsets of the data. In order to guarantee conver-
gence the most common scheme is that workers synchronize
the results after every iteration. For example, to support a
parallel PageRank we have to enforce that all nodes in a
graph are processed and a new PageRank is computed before
starting the next iteration.

Recent work in ML however relaxed the synchronization
restriction, allowing workers to also read inconsistent state
and even overwrite the results of other workers. A well-
known instance of this scheme is the lock-free approach
to parallelize SGD from Hogwild! [30]. Hogwild! allows
workers to read parameters and update them completely
asynchronously, potentially overwriting each others updates.
Hogwild! has been proven to converge for sparse learning
problems, where updates only modify small subsets of the
learned parameters. However, asynchronous schemes do
not give guarantees to converge in all cases. For example,

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

161

Hogwild! provides no guarantees for non-sparse learning
problems. Hence, another synchronization scheme has been
developed called bounded-staleness to allow only a limited
degree of asynchronicity and thus guarantee convergence.
The main idea of bounded-staleness is that in between a
model read and update of one worker only S other workers
can update the same model parameters. Moreover, another
effect of bounded-staleness is that it also better mitigates the
effects of data skew (or stragglers in general) compared to
the asynchronous scheme which under skew often spends
unnecessary computation and converges more slowly while
the synchronous scheme blocks if stragglers occur [7].
The contribution of DB4ML is that it implements these

well-known ML synchronization schemes [3] (synchronous,
asynchronous, and bounded-staleness) as isolation levels on
top of our MVCC-based storage for running sub-transactions
in parallel and coordinating the visibility of model-updates.
That way, an application can choose the most appropriate
isolation level for running their ML algorithm without hard-
coding this into the algorithm design. As a result, for example,
DB4ML can run its parallel SGD fully asynchronously in case
the learning problem is sparse or use bounded-staleness
as isolation level for non-sparse learning problems by just
implementing the algorithm once.

2.3 Programming Model
In order to add a new ML algorithm to DB4ML, users have
to implement two types of transactions: an uber-transaction
and an iterative sub-transaction. Uber-transactions are im-
plemented using normal non-iterative database transactions.
As mentioned before, the uber-transaction coordinates the
overall execution and checks for the convergence of the ML
algorithm.

To implement iterative sub-transactions, DB4ML provides
a new transaction interface as shown in Listing 1. At its core,
the interface defines an execute() function. The idea of
this function is that it implements a single iteration of the
ML algorithm. For example, the execute() function of an
iterative sub-transaction for PageRank could compute the
new rank for a single node or a subset of nodes in a graph
that are stored using ML-tables in DB4ML.

Another important extension over normal transactions is
that iterative sub-transactions can read/write data into/from
a transaction-local storage (called tx_state), which is pri-
vate to each instance of a sub-transaction. Parameters to
initialize the local state, can be handed over to the begin()
function which is called once before starting the execution of
the sub-transaction by the uber-transaction. The transaction-
local storage is kept between different iterations of the trans-
action and can be used for caching parameters or other values
that otherwise would need to be fetched from ML-tables in

Begin End PointerPayload

Physical MVCC Record

Figure 3: Physical Layout for Normal Records.

every iteration. In PageRank, for instance, pointers to neigh-
bors of a node or other parameters of the PageRank algorithm
(e.g., the epsilon parameter to control the convergence) can
be cached in the transaction-local storage.

Finally, the interface of iterative sub-transactions defines
a method called validate() to control the execution flow
of a sub-transaction. The validate() method is called by
DB4ML after the execute() function returns, in order to
determine the next action for an iterative sub-transaction.
The possible return values (T_ACTION) of validate() are:
• The validate returns COMMIT if the sub-transaction
finished one iteration but did not converge yet. In
this case, the updates of the last iteration of the sub-
transaction are committed (e.g., new PageRank val-
ues are written) and made visible only to other sub-
transactions initiated by the same uber-transaction
(i.e., not globally). Moreover, the sub-transaction is
enqueued again for the next iteration.
• The validate returns ROLLBACK if the last iteration
was not successful. This could happen if theML-isolation
guarantees are violated as we discussed before (e.g., the
data read by the sub-transaction is too stale w.r.t. the
staleness-level defined for the ML algorithm). In this
case, the updates of the last iteration of the sub-trans-
action are discarded. The sub-transaction is enqueued
again to repeat the iteration.
• The validate returns DONE if the sub-transaction con-
verged. In this case, the updates of the last iteration of
the sub-transaction are committed but the transaction
is not re-scheduled anymore (since it converged).

Once all sub-transactions of an uber-transaction converged,
the results of the ML algorithm are made visible globally for
other transactions in the DBMS. In the following, we discuss
the detailed implementation of the storage manager and the
execution engine of DB4ML.

3 STORAGE MANAGER
The storage manager of DB4ML provides so called ML-tables
that enablesDB4ML to support iterativeML algorithms inside
a DBMS. As we will see later in Section 4, using our storage
layout allows to elegantly realize different isolation levels
especially geared towards ML algorithms.

3.1 Basic Storage Layout
Iterative ML algorithms typically show the following work-
load pattern: In each iteration multiple data items are read

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

162

from the current database state in order to compute a new
global state (e.g., the new PageRank of a node in a graph). The
new state is then updated in the database and made visible
to other transactions so that subsequent iterations are based
on this new state. Consequently, these workloads are charac-
terized by many reads, few updates and multiple read-write
dependencies between different iterative transactions. This
type of workload is not well suited for locking-based con-
currency control protocols, where readers and writers block
each other when accessing the same data. Instead, Multi-
Version Concurrency Control (MVCC) [24] is a well-known
solution to tackle this problem which allows readers to read
a version without blocking writers to install new versions.
Figure 3 illustrates the basic MVCC-based record format

that is used in our storage engine for ML-tables which is
based on the design of [16]. Each record consists of a header,
a payload, and a pointer to the previous version. The header
defines the valid lifetime for a particular version as specified
by the Begin and End timestamps that define the visibility
of different versions of the same record. For the most recent
version of a record, Begin marks the commit time of the
transaction which installed the latest version and the End
timestamp is set to INF.

In DB4ML, a new version of a record can be installed either
by a normal database transaction or by an uber-transaction
once it commits; i.e., once the ML algorithm terminates and
the uber-transaction makes the results visible to other DBMS
transactions.

3.2 Extensions for Sub-Transactions
An important difference of our storage layout to the basic
MVCC-based layout in [16] is how we support intermedi-
ate versions of iterative sub-transactions within the same
uber-transactions to synchronize concurrent updates while
running an ML algorithm (e.g., PageRank). The key concept
is that sub-transactions spawned in the context of the same
uber-transaction use the following nested MVCC scheme:

• After the start of an uber-transaction, all sub-trans-
actions are initialized with the same begin timestamp
TT B as the uber-transaction; i.e., in the first iteration all
sub-transactions started by the same uber-transaction
read the same snapshot.
• Furthermore, sub-transactions that are started by the
same uber-transaction are also able to see updates of
the other sub-transactions that are committed after
each iteration.
• Other (uber-)transactions and their sub-transactions
(as well as normal database transactions), however,
are not allowed to read in-flight iterative versions.

Only after an uber-transaction commits once all sub-
transactions converged, the result of the ML algorithm
is made visible to other transactions.

In order to enable this nested MVCC scheme, sub-trans-
actions do not create a new version of a record for each
intermediate commit. Instead, for efficient processing, an
uber-transaction creates a so called iterative record, which is
used by all sub-transactions of the uber-transaction to store
their intermediate commits as so called iterative snapshots
in the payload of an iterative record. The physical layout of
an iterative record is shown in Figure 4 (upper part).
Similar to the normal MVCC-based record layout shown

in Figure 3, an iterative record also has a Begin and an End
field to control the global visibility of the record; i.e., when
other transactions are allowed to see the version. However, in
addition to a normal record, the header of an iterative record
contains an additional version counter (called IterCounter)
which is incremented with each commit of a sub-transaction
and is used to ensure consistency among sub-transactions of
the same uber-transaction. This counter is initialized with 0.
Furthermore, the payload of an iterative record allows

sub-transactions to store multiple intermediate versions into
a so called intermediate version array I of size n denoted as
Version1, . . . , Versionn in Figure 4. An important aspect of
an iterative record is that it actually only needs to store a
fixed number of intermediate versions (also referred to as
iterative snapshots) into I while I is used as a circular buffer.
This allows efficient iterative processing without any addi-
tional allocations to grow I . For installing a new version into
I , the IterCounter is incremented and the new incremen-
tal version of the record is written into the array position
IterCounter%size(I).

Figure 4 (lower part) shows an example of the result after
running PageRank on a Node table implemented as ML-table
storing a graph. In the example, we see the versions for the
two nodes 1 and 2 (i.e., two tuples of the table). For each
tuple, we see they were initially installed using a normal
database transaction that resulted in a normal version that
was valid from timestamp 0 to 10. Afterwards, PageRank
was started which created a new iterative record that is the
most recent version. The iterative record has a snapshot
array I of size 3. During the execution of PageRank, iterative
snapshots were installed into I whenever an iterative sub-
transaction committed a new PageRank (PR). As we see in the
example, the version counter for both nodes (NodeID 1 and
2) is set to 97 and 93 respectively, which means that iterative
sub-transaction committed already 97 and 93 intermediate
snapshots for these two nodes. Moreover, we can see that
the uber-transaction that was running PageRank already
terminated and committed its final output since the iterative
record was made visible to other transactions by setting the
Begin field of the iterative record to the commit timestamp

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

163

1

2

...

N

Hash index

(NodeID)

...

Begin IterCounter Version1 VersionnVersion..End Ptr

Iterative MVCC Record Format

10 INF 97 <1,0.2> <1,0.1> ...

10 INF 93 <2,0.3> <2,0.4> ...

Iterative versions of <NodeID, PR> tuple

0 10 <2,0.0>

Classical MVCC snapshot

Figure 4: Physical Layout for Iterative Records.

TT E of the uber-transaction (10 in our example) and the End
field to INF.

4 EXECUTION ENGINE
In the following, we discuss howML algorithms implemented
using our programming model are being executed in DB4ML.
We then show how ML-native isolation levels are imple-
mented on top of our MVCC-based storage manager. At the
end of this section, we also briefly outline some optimiza-
tions to enable an efficient execution onmodernmulti-socket
machines.

4.1 Executing ML algorithms
Uber-transactions for ML are executed as normal database
transactions in DB4ML; i.e., if a new uber-transaction is
started, the executor assigns the current timestamp as be-
gin timestamp TT B to the uber-transaction, which deter-
mines the versions that an uber-transaction can read. Fur-
thermore, all sub-transactions that are started by the same
uber-transaction inherit this timestamp and therefore see
the same snapshot. However, different from normal data-
base transactions, iterative sub-transactions in DB4ML use
iterative records (as discussed before in Section 3) to install
intermediate versions. In order to determine which inter-
mediate version to read, sub-transactions use the current
iteration counter IterCounter of an iterative record.

Once initialized, each sub-transaction keeps re-executing
until it converges. After every iteration, a sub-transaction in-
crements the iteration counter of the records it updates to in-
stall a new intermediate version as discussed before. Based on
the isolation level, concurrent writes of sub-transactions to
the same record are handled differently as we describe below.
In case the execution of one iteration of a sub-transaction is
not successful (i.e., the execute-function returns ROLLBACK)
the iteration counter is not increased and the write-set is not
installed.

Once all sub-transactions of an uber-transaction converged
(i.e., all sub-transactions return DONE as a result of the last

- INF 1 <1,0.2>

- INF 1 <2,0.3>

Sync

Node 1

Iterative MVCC Records V Iteration Counter

Versions-Progress
0 1

Node 2

Node 1

Node 2

Async

- INF 10 <1,0.2>

- INF 0 <2,0.3>

Version-Progress

0 10

Version-Progress

Bounded Staleness (3)

- INF 4 <1,0.2> <1,0.1> <1,0.2>

- INF 1 <2,0.3>

1 40

Figure 5: Different ML Isolation Levels.

validate call), the last intermediate snapshot that was com-
mitted by the sub-transactions is installed as a new global
snapshot by the uber-transaction using the current time-
stamp as commit timestamp TT E .

4.2 ML Isolation Levels
In the following, we explain how the different isolation levels
are implemented based on our previously discussed MVCC-
based storage engine:

Synchronous. In this level, a sub-transaction is allowed to
commit a new iterative version if in between a read and a
potential write to the same record, no other sub-transaction
installed a new version. Furthermore, if a sub-transaction
reads multiple records, they must all have the same version.
That way, synchronous execution is in fact a parallelized
bulk-synchronous execution of an ML algorithm. In Figure 5
(left), transaction T1 calculates the PageRank for Node 1 and
T2 for Node 2 respectively. In the synchronous isolation level
all nodes progress at the same speed.

Asynchronous. If this isolation level is set, no constraints
exist on which intermediate version of a tuple a sub-trans-
action is allowed to read; i.e., the tuples can still read the
most recent version but different from the synchronous iso-
lation level, a transaction can read different versions for
different records. Furthermore, a new version of a record can
be installed without any further checks. This might lead to
unequal progress of iterative sub-transactions as shown in
Figure 5 (center).

Bounded Staleness. This isolation level combines the ideas
of both asynchronous and synchronous; i.e., if a sub-transaction
reads multiple records it is allowed to use any intermedi-
ate snapshot with a version in the range [IterCounter −
S, IterCounter] where s is a configurable staleness factor [7].
In our example in Figure 5, S is set to 3.

5 OPTIMIZATIONS
As discussed before, DB4ML’s design is a general engine for
user-defined ML algorithms based on an MVCC-based stor-
age manager and a transaction-based execution engine. This

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

164

comes with overhead regarding storage management (e.g.,
versioning) as well as transaction scheduling. In order to alle-
viate the overhead of being a general engine for user-defined
ML algorithms, DB4ML implements the following important
optimizations to achieve a performance comparable to more
specialized hand-tuned engines that can run only a fixed set
of algorithms.

5.1 Storage Optimizations
The main overhead of the MVCC-based storage engine is
that it needs to keep track of multiple versions and their
versioning information. In the following, we discuss opti-
mizations for the different isolation levels to minimize the
versioning overhead.
• In order to implement the synchronous isolation level,
DB4ML currently uses a barrier after each iteration
instead of using the multiple versions and executing
the version-checking mechanism to guarantee a syn-
chronous execution. This has not only the effect that
version-checking can be completely avoided but also
that sub-transactions are not unnecessarily executed
and then directly aborted.
• The same observation holds also for the asynchronous
isolation level. Same as before, in this case DB4ML also
only needs to keep the most recent iterative snapshot.
However, instead of using a barrier to synchronize
iterations, we simply install a new version using an
atomic store operation without any barrier.
• For providing bounded-staleness DB4ML has to exe-
cute ML algorithms using the most general storage
implementation as discussed in Section 3 where multi-
ple versions are kept in an iterative record. However,
if we know that only one sub-transaction updates the
same tuple as it is the case for our PageRank imple-
mentation where the PageRank of one node is only
updated by the same transaction we can also use only
one version to provide bounded-staleness. This opti-
mization can be enabled by the ML algorithm using a
hint when starting the uber-transaction.

5.2 Execution Optimizations
Another source of overhead in DB4ML stems from the fact
that DB4ML needs to (re-)schedule transactions after every
iteration. In order to reduce this overhead, sub-transactions
are pre-grouped into batches to reduce the load on the sched-
uling queues; i.e., the scheduling queues hold pointers to
batches instead of pointers to individual sub-transactions.
The workers thus also keep track of the number of converged
sub-transactions per batch; i.e., only when batch-wise con-
vergence is reached, the batch is not rescheduled into the
queue anymore.

Second, similar to other main-memory DBMSs, DB4ML
also allows to partition the data to individual NUMA re-
gions [29] to optimize for data locality. At the moment,
DB4ML provides the classical data-partitioning schemes such
as hash-partitioning, round-robin, and range-partitioning
tables. Furthermore, for execution, worker threads in DB4ML
are pinned to a CPU core and grouped per NUMA region. All
worker threads in one NUMA region use a single queue per
group to avoid remote NUMA traffic. Each worker thread
in a NUMA region processes transactions by dequeuing a
sub-transaction from the assigned queue.

6 USE CASES
In this section we show how DB4ML can be leveraged to run
ML algorithms exemplified by two iterative ML algorithms:
PageRank and Stochastic Gradient Descent (SGD).

6.1 Use Case 1: Parallel PageRank
6.1.1 Overview. The first use case is the well-known Page-
Rank algorithm [28] which measures the relative importance
of web pages. PageRank assumes a graph structure where
individual web-pages are modeled as nodes and hyperlinks
between web-pages as directed edges.
The goal of PageRank is to assign a numerical weight to

each node, called PageRank (PageRank(node)), which indi-
cates the importance of a node. This weight represents the
possibility of a random visit and is affected by the weights
of incoming edges [28].
In our implementation we calculate the PageRank using

Equation 1, which was proposed by [28]. It computes the
PageRank of a node u based on the incoming edges from the
neighbors v . N represents the total number of nodes in the
graph and d is a damping factor. In our implementation, we
set d to 0.85, which is a damping factor commonly used [10].

PaдeRank(u) =
1 − d
N
+ d

∑
(v ,u)∈Edдes

PaдeRank(v)

outdeдree(v)
(1)

Each iteration of the PageRank algorithm evaluates the
formula in Equation 1 for each node in the graph. PageRank
converges if the weights remain stable according to a thresh-
old or after a pre-set and fixed number of iterations, which
prevents too long running executions. In the following, we
describe the process of implementing the PageRank algo-
rithm in our programming model using uber-transactions
and iterative sub-transactions.

6.1.2 Mapping to DB4ML. We first explain the relational
data model and then show the pseudo-code for the trans-
actions.

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

165

NodeID PR

1 0.1

2 0.3

… …

NID_From NID_To

1 2

2 1

… …

Figure 6: Node and Edge table for PageRank

Data Model. Our PageRank implementation leverages the
data model as shown in Figure 6. The Node table (shown left)
contains a tuple of the form <NodeID, PR> representing the
nodes in the graph with their NodeID and PageRank PR. The
Edge table (shown right) describes the adjacency list in the
form of <NID_From, NID_To>. In order to efficiently retrieve
the PageRank of neighbor nodes, we created an index on the
Node table on NodeID and on the Edge table on NID_To.

Uber-Transaction. The uber-transaction is responsible to
schedule iterative sub-transactions as described in Algo-
rithm 1. Further, it defines the isolation level for all sub-
transactions as being either synchronous, asynchronous, or
bounded staleness. The details of these isolation levels are
discussed in Section 4.
To compute the PageRank, the uber-transaction sched-

ules a sub-transaction for each node in the Node table while
passing the nodeId and respective neighbor node identi-
fiers neigbourIds as local state. The sub-transaction is cre-
ated and enqueued in DB4ML’s execution system using its
begin function. The uber-transaction waits until all sub-
transactions are converged, and then persists the final Page-
Rank values by issuing a COMMIT.

Algorithm 1: PageRank — Uber-Transaction
1 BEGIN TRANSACTION
2 SET SUB-TX ISOLATION LEVEL {SYNC|ASYNC|BOUNDED-STALENESS}

3 for each node in Node Table do
4 nodeId = node.NodeID

5 neighborIds = get_neighbors(nodeId)

6 sub_tx = new pr_sub_tx()

7 sub_tx.begin(nodeId, neigbourIds)

8 end
9 WAIT //until all sub_tx converged

10 COMMIT

11 END

Iterative-Transaction. Algorithm 2 describes how the it-
erative sub-transaction interface (see Section 2.3) is imple-
mented for the PageRank algorithm.
The begin method (line 2–5) defines the state of a Page-

Rank transaction as consisting of four elements: nodeId,
neighborIds, and the intermediate PageRank values. Since,
the first two elements never change over the course of the
algorithm, they are cached in the transaction state. This al-
lows to efficiently retrieve the neighbors PageRank in every
iteration; i.e., in the execute function. The actual calculation
of the PageRank value is defined in execute (line 7–11).

Once the PageRank for the new iteration is calculated
according to Equation 1, validate is called. This method
checks whether the convergence criteria is met and if so re-
turns DONE or otherwise COMMIT. Both actions persist the
new PageRank so that it is visible to other iterative sub-trans-
actions within the uber-transaction. In case DB4ML detects
a violation of the isolation level during commit, the changes
are rolled back (i.e., the last iteration of the transaction is
aborted). After a commit or abort, the sub-transaction is
re-scheduled for further iterations.

Algorithm 2: PageRank — Iterative sub-transaction
1 function begin (T_State initial_state)
2 tx_state.nodeId = initial_state.nodeId

3 tx_state.nnIds = initial_state.neighbors_nodeIds

4 tx_state.pr = 0

5 tx_state.old_pr = 0

6

7 function execute ()
8 neighbors = read_neighbors(tx_state.nnIds)

9 tx_state.old_pr = tx_state.pr

10 tx_state.pr = calculate_pr(neighbors,0.85) //Eq. (1)

11 update Node table with tx_state.pr

12

13 function validate ()
14 if converged(tx_state.pr, tx_state.old_pr) then
15 return DONE

16 else
17 return COMMIT

18 end

6.2 Use Case 2: SGD
6.2.1 Overview. As a second example, we implement sto-
chastic gradient descent (SGD), which is one of the key-
techniques for solving large-scale ML problems. SGD ran-
domly chooses a training sample in each iteration and up-
dates the model vector accordingly by estimating the current
gradient. We will use a parallel version of this usually se-
quential algorithm as also done in Hogwild! [30]. In the
following, we describe the process of porting the Hogwild!
algorithm into DB4ML and of applying NUMA optimizations
from Hogwild++.

6.2.2 Mapping to DB4ML. To begin with, we explain the
relational data model we used to store training samples and
model the parameter vector. We then show the pseudo-code
for the transactions inside DB4ML.

Data Model. The training data and the parameter vector
for gradient descent are represented in two tables as shown in
Figure 7. The GlobalParameter table (shown left) represents
the parameter vector xv and each element is updated using
the Hogwild! [30] updating scheme:

xv ← xv − γb
T
vGe (x) for each v ∈ e (2)

The Sample table contains all data items from the training-
set, where the features X and the labels Y are represented as

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

166

columns. Note, in order to enable random sampling from the
table, which is required by Hogwild!, we shuffle the training
data before starting the uber-transaction. This prevents the
database from using sorted data. While in our actual imple-
mentation we shuffle the data at the beginning of the uber-
transaction, for simplicity of this presentation, we assume
that the table is already shuffled before the uber-transaction
starts. We also inserted a primary-key column, randID and
built an index for that column, in order to pick random sam-
ples efficiently.

Figure 7: GlobalParameter and Sample Table

Uber-Transaction. In the uber-transactions as shown in Al-
gorithm 3 all constants as well as the asynchronous isolation-
level are set to comply with the updating scheme of Hogwild!.
In contrast to the PageRank example, the number of sub-

transactions in our pseudo-code is fixed and each sub-trans-
action is responsible for executing SGD on a partition of
the pre-shuffled training data (i.e., Sample table). Conse-
quently, the uber-transaction schedules the defined number
of sub-transactions and coordinates the assignment of sam-
ples. Additionally other required parameters e.g. the number
of epochs, or the step-decay, are passed to the sub-trans-
actions. We omit the additional parameters used by Hogwild!
for readability. At the end, the uber-transaction again waits
until every sub-transaction converged, which is the case
when the specified number of epochs has been computed.

Algorithm 3: Hogwild! — Uber-Transaction
1 BEGIN TRANSACTION
2 #rows = SELECT COUNT(*) FROM GlobalParameter

3 #subtxs = #cpu_cores

4 numEpochs = 20

5 stepDecay = 0.8

6 stepSize = 5e-2

7 SET SUB-TX ISOLATION LEVEL ASYNC

8 for i = 0...#subtxs do
9 startKey = i ∗ (#rows/#subtxs)

10 endKey = lowKey + (#rows/#subtxs) − 1
11 sub_tx = new sub_ tx()

12 sub_tx.begin(numEpochs, stepDecay, stepSize, startKey,
endKey))

13 end
14 WAIT //until all sub_tx converged

15 COMMIT

16 END

Iterative-Transaction. Algorithm 4 describes how the Hog-
wild! algorithm is implemented in our iterative sub-trans-
action interface (see Section 2.3). We only adapted the part
which interacts with the training data and model vector, the

Algorithm 4: Hogwild! — Iterative sub-transaction
1 function begin (T_State initial_state)
2 tx_state.currentEpoch = 0

3 tx_state.numberEpochs = initial_state.numberEpochs

4 tx_state.stepSize = initial_state.stepSize

5 tx_state.stepDecay = initial_state.stepDecay

6 tx_state.lowKey = initial_state.lowKey

7 tx_state.highKey = initial_state.highKey

8

9 function execute ()
10 for tx_state.lowKey ... tx_state.highKey do
11 rid = randomSample(tx_state.lowKey, tx_state.highKey)

12 sample = SampleTable.getTuple(rid)

13 update = Hogwild_ModelUpdate(sample) // see Hogwild! for
details

14 for u in update do
15 GlobalParameter.updateTuple(u)

16 end
17 end
18 tx_state.stepSize *= initial_state.stepDecay

19 tx_state.currentEpoch++

20

21 function validate ()
22 if tx_state.numberEpochs reached then
23 return DONE

24 else
25 return COMMIT

26 end

rest of the code could be seamlessly mapped to our program-
ming model.
In the begin function, the following initial state of the

algorithm is defined: the number of epochs until completion,
the subset of training samples, the step size, the step decay
and the number of epochs The range (lowKey, highKey)
defines a subset of the Sample table from which a sub-trans-
action picks an entry to compute a Hogwild! update.
The function execute is called in every iteration (i.e.,

once per epoch for each sub-transaction). First a random
RID is picked from the predefined range using the index on
RandID. Then the corresponding sample is retrieved using
table.getTuple(rid) (line 12). Hogwild_Model-
Update(sample) returns only changed entries of the model
vector using Equation 2. These updates are then written to
the GlobalParameter table using table.update-
Tuple(tuple), which corresponds to updating a single tu-
ple in the table. After that the step-size is increased and the
epoch counter is incremented.
After each call of the execute function, the validate

function checks if the algorithm converged. If the conver-
gence criteria is met (i.e., the maximum number of epochs
is reached), DONE is returned. If not, COMMIT is returned
and the sub-transaction is re-scheduled.

NUMA Optimizations. In order to scale across NUMA-
regions, we implemented the NUMA optimizations from
Hogwild++ [38] in our iterative sub-transaction. The Global-
Parameter table is split round-robin over each NUMA re-
gion. This ensures equal distributed write load on all memory
controllers. Further details are omitted due to brevity. How-
ever, more details are explained in [38] and can be applied
to DB4ML’s programming model.

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

167

Dataset Nodes Edges
gplus 107,614 18,112,696
patents 3,774,768 22,637,404
pld 39,497,204 704,376,276

Table 1: PageRank Datasets [18, 19, 34, 35]

gplus patents pld

2 8 32 2 8 32 2 8 32

64

256

1024

1

4

16

0.125

0.500

2.000

threads

tim
e
 [

se
c]

DB4ML Galois

Figure 8: PageRank — Runtime for 1 to 64 Cores.

7 EXPERIMENTAL EVALUATION
We evaluated DB4ML with regard to its overall performance
— measured in runtime — and its scalability across NUMA
regions. We also studied the runtime-accuracy trade-off be-
tween varying isolation levels. In our evaluation, we compare
DB4ML with three state-of-the-art implementations that are
optimized for the particular workload. To that end, we use
Galois [26], an optimized graph-engine, for PageRank. The
SGD use case is evaluated against Hogwild!, respectively
a NUMA-optimized version called Hogwild++ [30, 38]. All
these systems implement parallel manually-tuned engines
for the given workload and run outside a database system.
Both baselines — Galois and Hogwild++ — are NUMA-aware
and range partition the incoming data across NUMA nodes.
In order to be comparable, we employ the same partitioning
scheme as our baselines do. The goal of the evaluation is
to analyze whether our database kernel for iterative trans-
actions achieves a competitive performance despite running
inside a database without any major overhead for iterative
transaction handling.

7.1 Evaluation Environment
The experimental evaluation was conducted on a multi-
socket server with 64 cores, organized into eight NUMA
regions each with an Intel (R)Xeon(R)E7 − 8830 CPU at 2.13
GHz (with Hyper-Threading disabled). The server is running
Ubuntu 16.04.03 LTS and has 512 GB of RAM. The proto-
type of DB4ML was implemented using C++14 and compiled
using gcc-5.5.0.

7.2 Evaluation of PageRank
We evaluateDB4ML’s PageRank implementation as described
in Section 6.1 against a PageRank implementation from Ga-
lois [26].
As baseline, we used the synchronous pull-based imple-

mentation, which uses the same PageRank implementation

as DB4ML where workers pull PageRank from neighboring
nodes to update the PageRank of the node they are responsi-
ble for. Unfortunately, Galois does not provide an asynchro-
nous variant for the pull-based PageRank algorithm. Instead,
another version (called push-based PageRank) is available
that provides an asynchronous scheme. However, we do
not compare to this version since it provides bad scalability
(i.e., the NUMA-locality of this version is bad since many
writes cross NUMA boundaries) and is not algorithmically
comparable to our implementation.
For the evaluation we used multiple graph datasets with

different sizes as shown in Table 1.

7.2.1 Exp. 1 - Scalability of PageRank. In the first experi-
ment, we investigate the scalability of DB4ML’s synchronous
isolation level compared to the synchronous version of Ga-
lois on our eight socket NUMA system with 64 cores. We
designed our PageRank algorithm carefully to match Galois
convergence criteria and thus results in the same ranking
and PageRank values. For showing the scalability of DB4ML,
we increase the number of cores from 1 to 64 and report the
runtime.
Figure 8 compares the scalability on our three datasets

gplus, patents and pld. The y-axis (log-scaled) shows the
runtime in seconds and the x-axis (log-scaled) the number of
cores being used. We found that both systems scale equally
well on all datasets. There is a small advantage for Galois
when using more cores (48+). The reason is that DB4ML has
a minimal overhead due to our tuple format and hence the
QPI-links get earlier saturated.

Moreover, although both systems scale similarly well there
is a difference in runtime. DB4ML’s runtime is lower, which
is due to its batched execution. In this experiment, we use a
batch size of 256 which is optimal for all data sets. We discuss
the effects of using different batch sizes on the runtime of
DB4ML in Section 7.2.3 in more detail.

7.2.2 Exp. 2 - Effects of ML-Isolation Levels. Next, we exam-
ine the effect of using different isolation levels on the average
runtime and accuracy of PageRank. Since PageRank is known
to converge under asynchronous execution, we expect that it
outperforms the other schemes (bounded-staleness and syn-
chronous) since it has the least overhead if runtime across
sub-transactions is the same. However, in case of stragglers
that might result from skew in the connectivity of the graph,
the bounded-staleness scheme might be beneficial for accu-
racy since it mitigates that sub-transactions read too stale
values and thus might not make any progress (or even stop
too early).
For this experiment we thus ran PageRank on the gplus

data set using a fixed number of iterations. We executed
the experiment with 4 cores in total and used all isolation

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

168

N
o S

traggler
S

traggler

Sync (BS 0) BS 2 BS 10 Async

0

1

2

3

0

1

2

3

Isolation Level

T
im

e
(s

)

Sync (BS 0) BS 2 BS 10 Async

(a) Runtime

N
o S

traggler
S

traggler

Sync (BS 0) BS 2 BS 10 Async

0

25

50

75

100

0

25

50

75

100

Isolation Level

A
cc

ur
ac

y
(%

)

(b) Accuracy
Figure 9: Effect of ML-Isolation Levels

schemes of DB4ML. For bounded-staleness we used the stale-
ness factors 2 and 10. We executed the experiment with and
without having a straggling worker. In order to simulate a
straggler we let one worker randomly sleep between 0 and
100ms per iteration. We report the resulting average runtime
per worker and the pair-wise accuracy. The pair-wise accu-
racy is based on the synchronous converged results, meaning
we compare the ranking of each isolation level with our syn-
chronous version (which is assumed to produce the correct
ranking). The results of this experiment are shown in Figure
9.

Figure 9(a) shows the runtime without a straggler (upper
plot) and with a straggler (lower plot). Unsurprisingly, the
asynchronous isolation level has the lowest average run-
time in both cases since it has no synchronization overhead.
However, when looking at the accuracy in Figure 9(b) we
clearly see that the asynchronous scheme has the lowest
accuracy in the presence of a straggler (i.e., it only reaches
2% of the pair-wise accuracy compared to the synchronous
scheme which on the other hand has the highest runtime).
Further, we can observe that bounded-staleness represents a
trade-off between these two schemes. For instance, with a
staleness of 10, a worker only needs 2.5 seconds (compared
to 3.2 seconds for synchronous) on average and the overall
accuracy is already at 60%. As a result, bounded-staleness
represents a robust trade-off compared to the asynchronous
and synchronous execution. It provides a smaller runtime
compared to the synchronous scheme and a higher accuracy
than the asynchronous scheme for skewed and non-skewed
scenarios.

7.2.3 Micro-architectural Analysis. In the following, we con-
duct a micro-architectural analysis of DB4ML when execut-
ing PageRank to understand how DB4ML is able to provide
a performance similar to a specialized engine such as Galois.
As mentioned before, DB4ML’s transactional execution en-
gine is based on the standard transaction semantics in which
transactions need to validate and commit. Therefore each
iterative sub-transaction performs virtual function calls in

every iteration. For iterative sub-transaction with a complex
computation this overhead is negligible. However, in simple
tasks, e.g., PageRank, it becomes significant as it does not
contribute to the actual machine learning computation as
shown in Figure 10.

0%

25%

50%

75%

100%

PageRank Txn.

C
yc

le
s

S
pe

nt
 /

N
od

e
(%

) Txn Overhead
PR Calculation

(a) Overhead

1

2

3

2 8 32 128 512 2048 8192
Batch Size

T
im

e
R

el
at

iv
e

to
 2

56

 gplus patents

(b) Batch Sizes
Figure 10: Transaction Overhead and Effect of Batch
Sizes — (a) Batch Size=1, 1 Core (b) Runtime measured on 64
Cores

We initially focus on the additional transaction overhead
that comes with DB4ML and discuss how we minimized
this overhead using our optimizations of the storage and
execution scheme as discussed before. Figure 10(a) shows
the percentage of cycles spent in one PageRank transaction
responsible for one node using the gplus data set. As can
be seen, 20% of CPU-cycles are spent in transaction related
methods and 80% for the actual PageRank computation.

In order to alleviate the overhead of transactions, DB4ML
makes use of batching as discussed in Section 5. We ana-
lyzed the effects of batching in Figure 10(b) which shows the
performance for the gplus and patents datasets with 36 itera-
tions using all 64 cores. We normalized the runtime relative
to the runtime with batch size 256. For both data sets, we can
see that a batch size of 256 − 512 is optimal and efficiently
reduces the runtime even further compared to a batch size
of only 1.

1.0

1.5

2.0

2.5

1 2 4 8 16 32 64
Versions

M
et

ric
 R

el
at

iv
e

to
 S

in
gl

e
V

er
si

on

Metrics: Cycles L1 Misses LLC Misses

Figure 11: Overhead of Storing Multiple Versions —
CPU metrics relative to a single version

A second aspect that causes overhead in DB4ML compared
to a specialized engine such as Galois is that DB4ML uses
an MVCC-based storage engine. To show the overhead of
storing multiple iterative-versions we scaled the number of

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

169

0.15

15.17

0.04

6.76

107.08

6.50

0.33

1.79

0.21
0.53

10.21

0.65
1.37

165.07

1.41

50

100

150

covtype epsilon news20 rcv1 susy

tim
e
 [
se

c,
 s

q
rt

]

DB4ML

Hogwild!

Hogwild++

Figure 12: SGD — Runtime Comparison on 64 Cores.

e
p

silo
n

rcv1
su

sy

2 8 32

16

64

256

1

4

16

64

2

8

32

128

threads

tim
e
 [
se

c]

DB4ML Hogwild! Hogwild++

(a) SGD Runtime

88.69% 89.73% 88.63%

97.11% 97.71% 97.09%

77.99% 77.60% 77.46%

e
p

silo
n

rcv1
su

sy

DB4ML Hogwild!Hogwild++

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

a
c
c
u
ra

cy
 [
%

]

(b) SGD Accuracy
Figure 13: SGD— Comparison of Scalability BetweenDB4ML
and Hogwild! / Hogwild++.

versions from 1 to 64 PageRank versions. Figure 11 shows the
impact of physically storingmultiple versions on CPU-cycles,
L1-misses and LLC-misses for one iteration of PageRank and
one node using gplus. The metrics are shown relative to the
overhead of storing only a single version. We can see that
the computational overhead increases with more versions
being stored and causes up to 2.75× more cycles that need
to be executed – which is significant. However, as discussed
in Section 3 in the best case our optimizations enable us to
only store a single version for all ML-centric isolation levels
and thus do not need to pay a versioning overhead.
To summarize, by looking at the transaction overhead

and the effects of batch processing as well as the optimized

storage layout, we found that DB4ML’s overhead can be
reduced significantly on all data sets used for PageRank. As
a result, DB4ML’s achieves a performance comparable to
specialized engines with no transactional overhead, such as
Galois.

7.3 Evaluation of SGD
We evaluate DB4ML’s implementation of the Hogwild++ al-
gorithm against two baselines (Hogwild! [30] and Hogwild++
[38]) using the datasets from [38] (see Table 2). Both systems
implement a lock-free parallelized Stochastic Gradient De-
scent, i.e., asynchronous SGD. However, Hogwild! is not
NUMA-optimized and hence does not scale across sockets.
To alleviate this scalability issue, Hogwild++ introduced a
token-based synchronization, see [38] for more details. The
following experiments are trained on the same linear SVM
task as specified in [38] formula (2). For Hogwild++ and
DB4ML, we used the same settings as reported in [38] for
Hogwild++ and fixed the training duration to 20 epochs.

Dataset Classes Training set Test set Features
rcv1 2 677,399 20,242 47,236
susy 2 4.500,000 500,000 18
epsilon 2 400,000 100,000 2,000
news20 2 16,000 3,996 1,355,191
covtype 2 464,810 116,202 54

Table 2: SGD Datasets [21]

7.3.1 Exp. 1 - Runtime of SGD. In our first experiment, we
compare the multi-threaded performance (64 cores) of Hog-
wild!, DB4ML, and Hogwild++ on all five datasets. As already
shown by [38], Hogwild! has a significantly higher runtime
due to missing NUMA optimizations. This is confirmed by
our experiment for all datasets (cf. Figure 12). Further, we can
observe that DB4ML’s runtime is comparable to that of Hog-
wild++ on all datasets. This shows that DB4ML’s MVCC and
lightweight transaction scheme do not impose a high over-
head and that our general execution model is competitive to
a specialized engine.
7.3.2 Exp. 2 - Scalability of SGD. The main goal of this ex-
periment is to demonstrate how our database kernel scales in
comparison to Hogwild! and Hogwild++ when using 1 − 64
cores. The results of this experiment are shown in Figure 13.
The figure shows the runtime in seconds as well as the aver-
age accuracy for three datasets (rows) and the systems.

A first observation is that DB4ML is always comparable to
Hogwild++. For instance, DB4ML and Hogwild++ achieve a
speedup of 20 for the epsilon data set, while having a compa-
rable overall runtime. Furthermore, we can see that Hogwild!
does not scale across NUMA regions, while Hogwild++ and

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

170

0

250

500

750

1000

 DB4ML Hogwild++

C
yc

le
s

/ S
am

pl
e

0

2

4

6

8

 DB4ML Hogwild++
L1

-M
is

se
s

/ S
am

pl
e

(a) Few features, covtype

0

2500

5000

7500

10000

12500

 DB4ML Hogwild++

C
yc

le
s

/ S
am

pl
e

0

200

400

600

 DB4ML Hogwild++

L1
-M

is
se

s
/ S

am
pl

e

(b) Many features, rcv1
Figure 14: CPU Cycles and L1-Misses — For rcv1 and
covtype single threaded execution.

DB4ML achieve a better speedup across NUMA regions. In
terms of accuracy, DB4ML and Hogwild++ are also compara-
ble since they share the same algorithm. In conclusion, our
execution paradigm is able to keep up with the performance
of hand-tuned engines, while still being accurate.

7.3.3 Micro-Architectural Analysis. In the previous experi-
ments we solely focused on comparing runtime and accuracy.
As we saw, DB4ML can achieve a performance similar to that
of a specialized engine such as Hogwild++. In the follow-
ing, we thus compare important differences of DB4ML and
Hogwild++ on the micro-architectural level. Although both
engines implement the exact same algorithm there are two
noteworthy differences: (1) the underlying storage scheme
and (2) how multiple threads synchronize their work.

Regarding the storage scheme,DB4ML uses aMVCC-based
storage engine while Hogwild++ uses plain C++ arrays. As
discussed in Section 3, for the asynchronous execution scheme
that we use for SGD, we only need to store 1 version for each
value of the parameter vector. However, even when storing
one version onlyDB4ML still has a minor overhead compared
to plain C++ arrays as used by Hogwild++ due to maintain-
ing the version information. Moreover, for the coordination
of workers Hogwild++ is using a token-ring synchronization
which is implemented by passing a std::atomic. In DB4ML,
we mimicked this scheme using an additional relation where
each worker has a separate row. We set the flag in the cor-
responding entry when the worker can synchronize their
trained parameters.

In the following, we will analyze the overhead resulting
from these two architectural differences using two datasets
which differ in the number of features and thus the state
that needs to be updated. As already shown in Figure 12,
the overhead for the covtype dataset is negligible, while the
performance overhead for the rcv1 dataset is much higher. To
understand this effect better, Figure 14 shows CPU-cycles and
L1-Misses statistics per trained sample for a single-thread
execution for those datasets. For covtype which has only a
few features, most data that needs to be updated fits into
the cache and thus results in similar metrics regarding CPU-
cycles as well as cache misses as Hogwild++. In contrast,
the rcv1 dataset which has many more features does not
fit into the cache. As shown in Figure 14(b), compared to
Hogwild++ DB4ML spends around 40% more CPU cycles
which is strongly correlated to the increased L1-misses as
shown in the right side of the Figure.

This observation may lead to the conclusion that DB4ML
has a much higher overhead for data sets with many features,
however this is only true for a single-threaded execution. As
shown in Figure 13 for rcv1, the multi-threaded execution
is comparable to Hogwild++. The reason for a comparable
multi-threaded performance is two-folded. First, the num-
ber of training-samples are divided among cores, which in
turn leads to less training samples per core resulting in a
tighter (more cache efficient) training loop. Secondly, each
core has its private L1-cache, consequently, the more cores
we utilize the more L1-cache is available. Therefore, each
worker (pinned on a core) accesses more often the same and
less data and is able to utilize the L1-cache more efficiently.
In contrast, in single-threaded execution one worker loops
over all training-samples and various weight updates result
in more L1-misses.

8 RELATEDWORK
We first focus on related approaches for integrating ML into
databases, then discuss hand-tuned parallel ML algorithms
as well as other general data-parallel execution frameworks
that can be used to run ML algorithms. Furthermore, there
exists a huge body of work on NUMA-optimizations for
databases (such as [14, 29]), as well as MVCC-based trans-
action processing approaches (such as [2, 17, 25, 27]). While
all these results are relevant for this paper, the approaches
are orthogonal to DB4ML and are not further discussed.

ML in the Database: Recent papers suggested to improve
ML support inside the database [6, 9, 11–13, 20, 31, 32]. These
papers are mainly based on the idea of extending the SQL
query engine to better support ML (e.g. with iterative con-
cepts, or to integrate better linear algebra with SQL).

For instance, the BISMARK framework proposed by Feng
et al. [9] implements a unified architecture to define data

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

171

analytic tasks inside a relational DBMS via user-defined ag-
gregation functions. BISMARK takes a high-level analytic
task specification and runs it using user-defined aggregates.
GRFusion from Hassan et al. [11] extended a relational

database engine with graph support. The idea of GRFusion
is to add an efficient in-memory graph data structure to the
DBMS. To process the graph efficiently with the relational
database engine, they further propose specialized graph op-
erators. Their concept allows users to run graph queries,
relational queries, or queries that mix both workloads.
MADlib [12] is another approach to integrate ML algo-

rithms into a DBMS. MADLib is a library of analytic methods
that executes analytical and data-rich computations inside
PostgreSQL or Greenplum. The library’s core functionality
is written as C++ user-defined functions that are invoked
via SQL. However, tasks that require iterations are coded in
specialized Python driver routines outside the DBMS which
makes iterative ML algorithms rather inefficient.
While BISMARK [9] and GRFusion [11] only support a

limited set of problems, DB4ML supports a general program-
ming model for iterative ML algorithms. Another aspect,
of all before-mentioned papers, is that they do not support
fine-grained parallelism, which is shown to be a substantial
part of effective machine learning [33, 38]. Finally, none of
those approaches uses the ideas of transaction processing to
integrate ML algorithms into DBMS as we do in DB4ML.
Furthermore, many modern data systems often support

libraries for analytics and machine learning inside the data-
base. Examples include SAP PAL [23] for SAP HANA, as
well as the R integration for Oracle databases or SQL Server.
However, these libraries are not tightly integrated but are
typically executed in a separate process and thus suffer from
the data transfer problem similar to ML solutions that are
not integrated into a database.

ML outside the Database: There are many approaches and
libraries that provide machine learning capabilities outside
the database such as R, scikit-learn, etc. One category that is
of interest for this paper is ML implementations that lever-
age a fine-grained parallelization model and relaxed consis-
tency schemes such as asynchronous execution or bounded-
staleness. In the following, we exemplary discuss some of
these solutions. We believe that DB4ML provides a good
starting point to integrate these algorithms into a database.
Niu et al. proposed asynchronous SGD (Hogwild!) [30],

where each core updates a global model vector stored in a
shared memory simultaneously, without using explicit locks.
Hogwild achieves a nearly optimal convergence rate and the
authors prove experimentally that it outperforms alternative
parallelization schemes based on locking. However, the draw-
back of Hogwild is that it does not scale well on multi-socket
CPUs. Therefore Zhang et al. proposed Hogwild++ [38], a

decentralized asynchronous SGD algorithm that achieves
nearly linear speedup on multi-socket NUMA systems.

Shang et al. designed and implemented the HSync sched-
uler through fine-grained parallel vertex transactions [33].
They used a vertex-centric data model where each vertex
is stored with its edge-list. For computation, a user-defined-
function (UDF), e.g. PageRank, is applied to a vertex and
its edges. A transaction contains the computations for one
vertex in each iteration.

All these papers implement hand-tuned algorithms out-
side a database system, and thus they would need to pay
data transfer costs. Nonetheless, Hogwild++ proposed inter-
esting ideas for asynchronous execution which is partially
integrated into DB4ML. Furthermore, HSync, supports a fine-
grained parallelism by using the abstraction of transactions
similar to DB4ML. However, different from DB4ML, HSync
does not aim to extend a transactional engine with a rela-
tional data model with ML support. Instead, they use the
ideas of transactions to parallelize the computation in an
engine which builds on a native graph data model.

Other Data-parallel ML Frameworks. The general idea to
implement iterative machine learning algorithms with small
user-defined functions applied via a standard interface to a
large data set is also followed within parallel data processing
platforms such as Apache Spark [37], Apache Flink [5], and
many others [1, 4, 8, 22]. These systems are optimized for
distributed processing over large clusters.

9 CONCLUSIONS
In this paper, we proposed a novel approach and presented
DB4ML, an in-memory transactional database kernel to effi-
ciently execute ML algorithms.DB4ML offers a new program-
ming model and an execution engine with isolation levels
that provide the concurrency schemes required by modern
parallel ML algorithms. A central aspect of DB4ML is that
the programmer can implement user-defined ML algorithms
in DB4ML without having to worry about the low-level de-
tails of synchronization. That way, the implementation will
automatically benefit from all the parallelization and archi-
tectural optimizations which DB4ML contains - as to be ex-
pected from a database system. The experimental evaluation
using PageRank and SGD showed that DB4ML allows to im-
plement parallel versions of these algorithms with minimal
boiler-code and knowledge of optimization techniques, and
that DB4ML’s transactional layer does not set it behind other
existing solutions in regard to execution time.

ACKNOWLEDGMENTS
This work was partially funded by the German Research
Foundation (DFG) under grants BI2011/1 and gifts from Mel-
lanox and Huawei.

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

172

REFERENCES
[1] M. Abadi et al. Tensorflow: A system for large-scale machine learning.

In OSDI, OSDI’16, Berkeley, CA, USA, 2016. USENIX Association.
[2] M. Alomari et al. Performance of program modification techniques

that ensure serializable executions with snapshot isolation DBMS. Inf.
Syst., 40:84–101, 2014.

[3] T. Ben-Nun et al. Demystifying parallel and distributed deep learning:
An in-depth concurrency analysis. ACM Comput. Surv., 52(4):65:1–
65:43, 2019.

[4] M. Boehm et al. Systemml: Declarative machine learning on spark.
PVLDB, 9(13), Sept. 2016.

[5] P. Carbone et al. Apache Flink: Stream and batch processing in a single
engine. IEEE Data Engineering Bulletin, 38(4):28—-38, 2015.

[6] L. Chen et al. Towards linear algebra over normalized data. PVLDB,
10(11):1214–1225, 2017.

[7] J. Cipar et al. Solving the straggler problem with bounded staleness.
In HotOS, volume 13, pages 22–22, 2013.

[8] J. Dean et al. Mapreduce: Simplified data processing on large clusters.
In OSDI, OSDI’04, 2004.

[9] X. Feng et al. Towards a unified architecture for in-RDBMS analytics.
In ACM SIGMOD, pages 325–336. ACM, 2012.

[10] H.-H. Fu et al. Damping factor in google page ranking: Research
articles. Appl. Stoch. Model. Bus. Ind., 22(5-6), Sept. 2006.

[11] M. S. Hassan et al. Extending in-memory relational database engines
with native graph support. In EDBT, pages 25–36, 2018.

[12] J. M. Hellerstein et al. The madlib analytics library or MAD skills, the
SQL. PVLDB, 5(12):1700–1711, 2012.

[13] M. A. Khamis et al. In-database learning with sparse tensors. In ACM
SIGMOD, pages 325–340, 2018.

[14] T. Kiefer et al. Eris live: A numa-aware in-memory storage engine
for tera-scale multiprocessor systems. In ACM SIGMOD, SIGMOD ’14,
2014.

[15] T. Kraska et al. Datumdb: A data protection database proposal, 2019.
[16] P.-A. Larson et al. High-performance concurrency control mechanisms

for main-memory databases. Proc. VLDB Endow., 5(4):298–309, Dec.
2011.

[17] V. Leis et al. Morsel-driven parallelism: a numa-aware query evaluation
framework for the many-core age. In ACM SIGMOD, pages 743–754,
2014.

[18] J. Leskovec. G-Plus dataset. https://snap.stanford.edu/data/
egonets-Gplus.html, 2018.

[19] J. Leskovec. Patents dataset. https://snap.stanford.edu/data/cit-Patents.
html, 2018.

[20] X. Li et al. Mlog: Towards declarative in-database machine learning.
PVLDB, 10(12):1933–1936, 2017.

[21] C.-J. Lin. LIBSVM datasets. https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/binary.html, 2018.

[22] Y. Low et al. Distributed graphlab: A framework for machine learning
in the cloud. PVLDB, 5(8):716–727, 2012.

[23] J. MacGregor. Predictive Analysis with SAP: The Comprehensive Guide.
SAP PRESS, 2013.

[24] C. Mohan, H. Pirahesh, and R. Lorie. Efficient and flexible meth-
ods for transient versioning of records to avoid locking by read-only
transactions. In Proceedings of the 1992 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’92, pages 124–133, New
York, NY, USA, 1992. ACM.

[25] T. Neumann et al. Fast serializable multi-version concurrency control
for main-memory database systems. In ACM SIGMOD, pages 677–689,
2015.

[26] D. Nguyen et al. A lightweight infrastructure for graph analytics. In
ACM SIGMOD, pages 456–471, 2013.

[27] H. H. others. Scalable serializable snapshot isolation for multicore
systems. In ICDE, pages 700–711, 2014.

[28] L. Page et al. The PageRank citation ranking: Bringing order to the
web. Technical Report 1999-66, November 1999.

[29] I. Psaroudakis et al. Adaptive numa-aware data placement and task
scheduling for analytical workloads in main-memory column-stores.
PVLDB, 10(2):37–48, 2016.

[30] B. Recht et al. Hogwild: A lock-free approach to parallelizing stochastic
gradient descent. In NIPS, pages 693–701, 2011.

[31] M. Schleich et al. Learning linear regression models over factorized
joins. In ACM SIGMOD, pages 3–18, 2016.

[32] M. E. Schüle et al. Mlearn: A declarative machine learning language for
database systems. In Proceedings of the 3rd International Workshop on
Data Management for End-to-End Machine Learning, DEEM@SIGMOD
2019, Amsterdam, The Netherlands, June 30, 2019, pages 7:1–7:4, 2019.

[33] Z. Shang et al. Graph analytics through fine-grained parallelism. In
ACM SIGMOD, pages 463–478. ACM, 2016.

[34] SNAP. Wikivote dataset. https://snap.stanford.edu/data/wiki-Vote.
html, 2019.

[35] WDC. PLD dataset. http://webdatacommons.org/hyperlinkgraph/,
2018.

[36] G. Weikum and H.-J. Schek. Concepts and applications of multilevel
transactions and open nested transactions. In A. K. Almagarmid, editor,
Database Transaction Models for Advanced Applications, pages 515–553.
Morgan Kaufmann Publishers, 1992.

[37] M. Zaharia et al. Spark: Cluster computing with working sets. In 2nd
USENIX Workshop on Hot Topics in Cloud Computing, 2010.

[38] H. Zhang et al. Hogwild++: A new mechanism for decentralized
asynchronous stochastic gradient descent. In ICDM, pages 629–638.
IEEE, 2016.

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

173

https://snap.stanford.edu/data/egonets-Gplus.html
https://snap.stanford.edu/data/egonets-Gplus.html
https://snap.stanford.edu/data/cit-Patents.html
https://snap.stanford.edu/data/cit-Patents.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://snap.stanford.edu/data/wiki-Vote.html
https://snap.stanford.edu/data/wiki-Vote.html
http://webdatacommons.org/hyperlinkgraph/

	Abstract
	1 Introduction
	2 Overview
	2.1 High-level Architecture
	2.2 Synchronization Schemes
	2.3 Programming Model

	3 Storage Manager
	3.1 Basic Storage Layout
	3.2 Extensions for Sub-Transactions

	4 Execution Engine
	4.1 Executing ML algorithms
	4.2 ML Isolation Levels

	5 Optimizations
	5.1 Storage Optimizations
	5.2 Execution Optimizations

	6 Use Cases
	6.1 Use Case 1: Parallel PageRank
	6.2 Use Case 2: SGD

	7 Experimental Evaluation
	7.1 Evaluation Environment
	7.2 Evaluation of PageRank
	7.3 Evaluation of SGD

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

