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Abstract
In this paper, we propose the Data Flow Interface (DFI) as a 

way to make it easier for data processing systems to exploit high-
speed networks without the need to deal with the complexity of 
RDMA. By lifting the level of abstraction, DFI factors out much of 
the complexity of network communication and makes it easier for 
developers to declaratively express how data should be efficiently 
routed to accomplish a given distributed data processing task. As 
we show in our experiments, DFI is able to support a wide variety of 
data-centric applications with high performance at a low complexity 
for the applications.
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1 Introduction
Motivation: Scale-out data processing systems are the typical archi-
tecture used today by many systems to process large data volumes 
since they allow applications to increase compute and memory 
capacities by simply adding further processing nodes. However, a 
typical bottleneck in scale-out systems is the network which often 
slows down the speed of data processing if communication is in the 
critical path. For distributed in-memory systems this might lead to 
degraded performance when adding more nodes [29].

However, this changed with the advent of high-speed networks 
such as InfiniBand. Network bandwidth increased almost up to 
the speed of main memory and latencies dropped by orders of 
magnitude [4], making scale-out solutions more competitive. How-
ever, blindly upgrading to faster networks does often not directly 
translate into performance gains, as there is a plenitude of aspects 
to consider to achieve a good performance for distributed data 
processing systems.

One particular important aspect to efficiently use high-speed 
networks is to redesign data processing systems to leverage remote 
direct memory access (RDMA) as a low overhead communication 
protocol. RDMA provides kernel bypass and zero-copy making 
data transfers less expensive than classical network stacks such 
as TCP/IP [12]. In recent years, industry and academia have thus 
started to adapt scale-out data processing systems in order to make
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use of RDMA. As a result, significant speed-ups have been shown
for a wide range of data processing systems ranging from key-value
stores [17, 21, 26], over distributed DBMSs (for OLTP and OLAP)
[4, 18, 34, 37–39] to Big Data systems and Distributed Machine
Learning [15, 25, 36].

However, using RDMA is complicated because it provides only
low-level abstractions (called RDMA verbs) for data processing
[8]. Hence, redesigning data processing systems for RDMA often
requires significant efforts to take care of many low-level detail
choices [3, 4, 16, 18, 41] regarding remote memory and connection
management as well as other decisions such as which RDMA verbs
to use for which type of workload.
Contribution: In this paper, we propose the Data Flow Interface
(DFI) as a way to make it easier for data processing systems to
exploit high-speed networks. Accordingly, DFI defines abstractions
and interfaces suited to a broad class of data-intensive applications,
yet simple enough for practical implementation with predictable
performance and low overhead relative to “hand-tuned”, ad hoc
alternatives. In designing a high-level interface tailored to data
processing, we adopt the approach taken by the high-performance
community for MPI [14] to provide a simple yet effective interface
for high-speed networks. However, since MPI has been designed for
computation-intensive workloads such as large-scale simulations,
it comes with many design choices that are not optimal for data-
intensive workloads [19]. Consequently, MPI has seen only very
limited adoption for data processing systems [2].

In brief, the main idea of DFI is that data movements are repre-
sented as flows. DFI flows are an abstraction providing primitives
for efficient network communication. These primitives are intended
to be used as a foundation for building data-intensive systems and
provide many benefits over MPI (e.g., thread-centricity, pipelined
communication). By lifting the level of abstraction, DFI flows not
only hide much of the low-level complexity of network commu-
nication but also allow developers to declaratively express how
data should be efficiently routed to accomplish a given distributed
data processing task. Moreover, DFI flows allow developers to spec-
ify optimization hints; e.g., to maximize bandwidth-utilization or
minimize network latency of transfers. By using flows as the main
abstraction, DFI supports a wide variety of data-centric applica-
tions ranging from bandwidth-sensitive distributed OLAP to more
latency-sensitive workloads such as distributed OLTP or replication
with consensus protocols.

Recently, the need for better interfaces to high-speed networks
has also been discussed in a vision paper [1]. We, however, are the
first paper that provide a concrete suggestion and a full implemen-
tation for an interface that can enable a broad class of data-centric
applications to make efficient use of modern networks. Moreover,
there have also been several other attempts to build libraries for
data processing over high-speed networks [5, 9, 11]. For example,
FaRM [9] and GAM [5] provide a programming model based on a
shared address space which focuses on supporting latency-sensitive
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workloads (e.g., such as distributed transactions). Another example
is L5 [11], which target the communication between clients and
servers to replace traditional client-centric communication libraries
such as ODBC. Different from those libraries, as mentioned be-
fore, DFI flows aim to be a much more general abstraction that can
support a broader class of data-centric applications.

Finally, like MPI and different from the approaches mentioned
before (such as FaRM, GAM and L5), DFI only defines an interface
for communication. Hence, different vendors can provide an effi-
cient implementation of DFI for their network technology. As a
result, this increases the compatibility and portability of data pro-
cessing systems across different networking technologies including
RDMA-capable networks (such as InfiniBand as well as RoCE).

In summary, this paper makes the following contributions:
• First, we present the design of DFI based on the general
abstraction of flows that allow developers to declaratively
specify the communication behavior of distributed systems
by defining its topology (1:1, N:1, 1:N and N:M) as well as
providing other properties for execution.

• Second, we provide a first implementation of DFI1 for an
InfiniBand-based networking stack and discuss how the high-
level abstractions of DFI are being mapped to the low-level
implementations using RDMA.

• Third, we provide an exhaustive evaluation of our DFI imple-
mentation and demonstrate that DFI does not only provide
many benefits over MPI for data processing but also show-
case that DFI can provide high performance for different
data-centric applications.

Outline: The remainder of this paper is structured as follows: In
Section 2, we first give an overview of two existing interfaces,
RDMA verbs and MPI. Moreover, we analyze MPI as the direction
taken by the high-performance community to provide a simple
yet effective interface for high-speed networks and discuss the
limitations of MPI for distributed data processing. Afterwards, in
Section 3 we present an overview of DFI before we discuss details of
the programming model in Section 4 as well as our implementation
for InfiniBand in Section 5. Finally, we conclude with our evaluation
in Section 6 and a summary in Section 7.

2 Existing Interfaces
In this section we aim to give an overview of existing interfaces

namely the standard RDMA verbs interface native to the InfiniBand
network stack and the Message Passing Interface (MPI), the de facto
standard in the HPC community.

2.1 RDMA Verbs
The InfiniBand RDMA verb interface is a low-level interface pro-

viding low latency and high bandwidth communication. The inter-
face exposes one-sided verbs (write, read & atomics) and two-sided
verbs (send & receive) which refer to the involvement of end-points
(i.e., one-sided verbs only involves the CPU of the sender). The high
performance of RDMA is in general achieved by the asynchronous
nature of RDMA, making it possible to pipeline computation and
communication such that the CPU is not busy idling during net-
work communication. To issue RDMA verbs (one- or two-sided), the

1https://github.com/DataManagementLab/DFI-public

application has to register a memory region in which the RNIC can
directly access memory, leaving communication related memory-
management a responsibility of the application. Moreover, due to
the RDMA verb interface’s very low abstraction level it provides
also a huge design space. This requires, however, that applications
need to carefully explore this design space and to optimally make
use the available low-level options [11, 17, 40, 41].

2.2 Message Passing Interface
The Message Passing Interface (MPI) is widely used by the HPC

community as a high-level abstraction for high-speed networks,
and has through many years of development reached a mature
and industrial-strength quality. One could now argue that MPI is
already good enough for data-centric applications as well. In the
following, we first aim to provide a better understanding of the
programming and execution model of MPI and next we discuss the
shortcomings of MPI for data-centric applications.
Programming Model: For programming distributed applications,
MPI provides different primitives. These primitives can be cate-
gorized into point-to-point and collective communication.

• Point-to-point communication: The MPI point-to-point primi-
tives provide communication operations to exchange data
between a sender and a receiver. Point-to-point primitives,
similar to native RDMA verbs, support two-sided communi-
cation with send and receive, as well as one-sided primitives
with put and get. For the two-sided primitives, the send re-
quest has to be matched with a receive request, whereas
the one-sided primitives transfer data without involving the
remote side into the communication. While the point-to-
point primitives offer high flexibly in how data is exchanged
between two nodes, they still leave many low-level details
to the application and thus only raise the level of abstrac-
tion minimally compared to native RDMA verbs (RDMA
read/write or RDMA send/receive). For example, the remote
memory management for the one-sided MPI primitives (put
and get) is still up to the application to handle, which in a
setup with many writers, involves considerable amounts of
engineering efforts to coordinate the concurrent memory
accesses as shown in [2].

• Collective communication: Different from the point-to-point
primitives, the so-called MPI collectives targets many-to-
many communication betweenmultiple (sender and receiver)
nodes and provide a higher-level abstraction to exchange
data between nodes. Examples of MPI collectives are scatter,
gather, broadcast or reduce and all to all that transfer bulks
of data (i.e., vectors of elements) between multiple nodes.
Hence, collectives seem to be a perfect candidate for many
data processing tasks such as data shuffling or even to imple-
ment replication protocols. However, while the collectives
provide a convenient way to exchange data between multi-
ple nodes, all these primitives use a bulk synchronous (i.e.,
blocking) communication model where all data needs to be
available on the sender side before the collective is being
executed. This limits the efficiency of MPI collectives for
data processing [19] since it hinders overlapping of compute
and communication.
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Execution Model:MPI programs follow a process-centric execution
model, where parallelism is achieved by running the multiple pro-
cesses of the same program in parallel on multiple nodes. A new
MPI program is started by running mpirun which launches the
same program on all specified processes spread across the specified
cluster nodes. Again, this process-centric parallelization model is
not ideal for data processing systems as we discuss next.

2.3 Shortcomings of MPI
In the following, we give a brief overview of the main limitations

of MPI for distributed data processing systems. Many of these
shortcomings are evaluated further in Section 6.2.
Compute- and not Data-centric:MPI was designed towards support-
ing compute-intensive applications such as distributed simulations.
However, the communication behavior in these types of distributed
applications is very different from the needs of data-intensive ap-
plications. While distributed simulations exchange data in a bulk
synchronous manner (i.e., after every iteration of a simulation),
many data-centric applications are often dominated by data trans-
fers (i.e., data shuffling).

Hence, for many data-centric applications it is important that ap-
plications can overlap computation and communication efficiently
such that compute resources do not get idle [3]. This also holds for
more latency sensitive operations such as distributed transactions.
As shown in [33], overlapping does not only help to increase the
overall throughput but it also reduces the end-to-end latency of
distributed transactions.

Therefore, various types of data-centric applications would ben-
efit from a pipelined (i.e., overlapping) communication model that
provides a more loose coupling between senders and receivers.
While a pipelined communication model is available for MPI’s
point-to-point primitives such as non-blocking send or one-sided
put and get primitives, using these primitives in a non-blocking
manner often results in more complex application code similar
to using RDMA verbs directly [2]. In addition to point-to-point
primitives, MPI collectives provide a higher-level of abstraction for
communication between multiple nodes. However, as mentioned
before, MPI collectives use a bulk-synchronous communication
model.Extensions of MPI collectives to support pipelining [35] have
unfortunately not made their way into today’s MPI distributions.
Hence collectives as they are available today do not only lack the
the support for overlapping of computation and communication but
also are thus sensitive to stragglers and skew which can both limit
the performance in data processing systems significantly [6, 31].
Process-centric and not Thread-centric: As mentioned before, MPI
has been designed for process-level parallelism. As such, the com-
munication primitives of MPI (point-to-point and collectives) were
designed for single-threaded usage; i.e., only one dedicated com-
munication thread of an MPI process can call the communicating
primitives. This, however, is very different from designs of mod-
ern data-centric systems for high-speed networks where multiple
worker threads are often required to saturate the network [4, 38].

While recent papers [2] have shown that multi-process paral-
lelism can be used in MPI to saturate the network, it comes with
other downsides.For example, when usingmulti-process parallelism

within a node, global data structures (e.g., an aggregation hash table)
need to be accessed by different processes through shared memory.

Finally, in the recent years, many MPI distributions have added
multi-threading support. However, as multi-threading support was
only added as an afterthought, it lacks an efficient implementation
in MPI as we show in our evaluation.

3 DFI Overview
In this section, we first highlight the central design goals of DFI

before we discuss the flow-based programming model, as well as
the high-level idea of the execution model behind flows.

3.1 Key Design Principles
The aim of DFI is to provide a high-level abstraction that provides

efficient support for a broad set of data processing systems. In the
following, we present the key design principles of DFI to ideally
support the needs of these systems:

(1) Pipelining: Different fromMPI, which targets compute-centric
applications such as distributed simulations, many data-centric ap-
plications are often dominated by data transfers (i.e., data shuffling).
For this reason, it is shown to be crucial that computation and
communication can be overlapped [3].

(2) Thread-centricity: Multi-threading is essential not only in
achieving high degrees of parallelism in modern data-centric ar-
chitectures but also to saturate the network as mentioned before.
Hence, different from MPI, DFI should be designed from ground up
to enable a thread-centric execution and communication model.

(3) Low-overhead synchronization: Another important aspect that
goes along with thread-centricity is that DFI aims to provide low-
overhead synchronization between sender and receiver threads as
well as between sender threads that target the same receiver. By
providing low-overhead synchronization, DFI thus should enable
scalability to a high number of sender and receiver threads.

(4) Declarative optimization: A last important goal is that DFI
exposes parameters as a handle for applications to declare what op-
timizations are desired. Examples of such optimizations are whether
applications are bandwidth or latency sensitive, but also other guar-
antees such as global ordering of messages when data is send across
flows (which is important, for example, for data replication proto-
cols).

3.2 Flow-based Programming Model
At the center of the abstraction are DFI’s flows. Flows encap-

sulate the movement of data between end-points in a distributed
application, by exposing sources and targets as data entry and exit
points on a per thread-level. This simple abstraction allows appli-
cations to compose potentially complex communication topolo-
gies, including both point-to-point, one-to-many, many-to-one and
many-to-many communications between worker threads of mul-
tiple nodes. As we show later in this section, the flow abstraction
is powerful enough to support a wide range of data processing
use-cases such as distributed join algorithms, but also consensus
protocols.

In the following, we provide an example of a concrete many-to-
many flow type in DFI, which is one out of multiple other flow types
as we discuss later. The most common many-to-many communi-
cation in data processing systems is arguably key-based shuffling
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Source 1

Target 1

Target 2

sources targets shuffle key

Flow initialization

Flow execution

DFI_Nodes n({"192.168.0.1|0", ...});
DFI_Schema schema({"key", int},{"value", int});
DFI_Flow_init(name, {n[0]}, {n[1], n[2]}, schema, 0);

for(auto tuple : tuples)
   source.push(tuple);

target.consume(tuple); // {0,20}
target.consume(tuple); // {2,30}

target.consume(tuple); // {3,20}
target.consume(tuple); // {7,40}

Figure 1: DFI’s Programming and Execution Model. Exam-
ple of flow initialization for setting up a shuffle based flow.
The flow execution exemplifies the tuple-based push and
consume primitives on DFI.

of data across multiple sources and targets. An example of such a
shuffle flow in DFI is illustrated in Figure 1.

As we see in the example, before a flow can be used it first has to
be initialized by specifying a unique flow name identifier, location
of source and target threads identified with the node address and a
thread ID in DFI_Nodes, the schema of tuples that are transferred
and on which key the tuples should be shuffled (see upper part
of Figure 1). Note, it is also possible for applications to specify
application-specific partition functions, but as default a simple key-
based hash function is used to partition the tuples across receivers.

To make the flow available for other nodes, its metadata is pub-
lished in a central registry upon initialization (e.g., a master node
in a distributed system). For using a flow, sources and targets first
need to retrieve the flow metadata from the central registry. The
source nodes can then use a flow by pushing tuples into the flow
and the target to consume tuples out of the flow by pulling from
the flow (see lower part of Figure 1).

In addition to shuffle flows between 𝑁 senders and𝑀 receivers,
DFI provides many other flow types (i.e., a combiner and a repli-
cate flow) and topologies (i.e., 1:1, N:1, 1:N and N:M) to support
various data processing applications. More details about the full
programming model of DFI will be explained in Section 4.

3.3 High-level Flow Execution
Key to the execution model of DFI’s flows are the design prin-

ciples discussed above. We achieve these design principles by im-
plementing an execution model where each thread with a source
or target has a private send/receive buffer that not only decouples
sender from receiver threads but also uses a new memory layout
for remote data transfer between sender/receiver threads with only
minimal synchronization overhead as we discuss next.

In the following, we present the high level execution of flows by
following the example of shuffling tuples shown in Figure 1. The
push primitive on sources is asynchronous and returns immediately
after the tuple to be transferred is copied into the internal send
buffer. This non-blocking behavior allows applications to interleave
the computation and communication, i.e., pipeline, and thus utilize
both CPU and network resources. Moreover, internally the flow
execution heavily uses the available one-sided RDMA primitives
to reduce the CPU involvement of the targets, and thus decouples
the sources and targets as much as possible. To enable one-sided

network communication, as mentioned before, a receive buffer must
be in place inwhich the tuples of one ormultiple sending threads are
written to. Details about the buffer design and their low-overhead
synchronization model are discussed further in Section 5.

Once a tuple has been pushed into the flow, a routing decision
will be made by the flow based on the provided shuffling key. De-
pending on the chosen optimization goal (bandwidth or latency),
the execution of the flow will transport tuples across the network.
For bandwidth optimization, flows batch tuples together destined
for the same target in order to achieve a better bandwidth utilization
through larger messages. On the other hand if a latency optimiza-
tion is chosen, the flow execution will prioritize transferring the
tuple as soon as possible. The details of these optimizations are
discussed further in Section 5 as well.

4 Programming Model
In the following, we present a more detailed view on the pro-

gramming model of DFI and its main abstractions by detailing the
opportunities for setting up various communication flow types. In
addition, the programming model will be demonstrated through a
set of concrete use cases.

4.1 DFI Tuples
To allow processing of application-specific tuples between dif-

ferent end-points (i.e., threads) of DFI flows, DFI receives the tuple
types through the passed schema on flow initialization. The schema
can be constructed of various data types, that each mirrors the size
of C++ types, specifically the LP64 data model (default data model
in most Unix-based systems). The types, however, can be extended
by the application to meet the need for other user-defined types.

DFI’s type system enables efficient data processing: (1) Avoiding
any type interpretation overhead is key to high-speed networks
since every additional overhead can significantly reduce bandwidth
or increase latency of the overall distributed algorithm [12, 30].
Tuple types are parameters of flows that are defined at flow ini-
tialization; i.e., no type interpretation happens at flow execution.
Instead, efficient offset computation can be used to access attributes
of a tuple (e.g., to make routing decisions). (2) The type system
of DFI also allows applications to push down the processing to
devices in the network, such that the interface is extensible towards
leveraging the future generations of SmartNICs and programmable
switches. For example, data aggregation of a DFI combiner flow
(which is another DFI flow type) could be pushed into InfiniBand
switches as we discuss below.

4.2 DFI Flows
So far we have only presented a concrete example of constructing

a flow for shuffling tuples between a set of source and target threads.
However, DFI defines flows with different characteristics to support
the wide demands of data processing systems. Table 1 shows the
three flow types in DFI, the communication topologies supported by
the corresponding flows, as well as their declarative flow options.

The flow abstraction also offers easy adaptability of application
algorithms, since different types of flows can be trivially exchanged
to offer different behaviors. For instance, to change a symmetric re-
partition join algorithm into a fragment-and-replicate join, instead
of using a shuffle flow that routes tuples based on the join key,
use a replicate flow to replicate the inner table. Performing such
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Flow type Communication topology Flow options
Shuffle flow 1:1, N:1, 1:N, N:M Bandwidth/latency
Replicate flow 1:N, N:M Bandwidth/latency + or-

dering guarantees
Combiner flow N:1 Bandwidth/latency + var-

ious aggregations
Table 1: DFI flow types for a wide range of data-centric ap-
plications. Communication topologies and flow options fur-
ther allow applications to adjust the behavior of flows based
on application requirements.

algorithmic changes on typical solutions leveraging the RDMA verb
interface would infer a significant rewrite of the communication
relevant parts of the solution.

In the following, we discuss the different flow types and their
potential use in data processing systems.
4.2.1 Shuffle Flow: The shuffle flow is a central abstraction of
DFI, where various different communication patterns and routing
options can be specified. The communication pattern is indirectly
defined by declaring the participating sources and targets in the
flow initialization, and can therefore follow 1:1, N:1, 1:N and N:M
communication patterns between sending and receiving threads.

The routing of tuples from sources to targets can be defined
in three ways in a shuffle flow: (1) The application specifies the
shuffle key and let DFI handle the routing. (2) A routing function
can be supplied for more control, e.g., to realize different partition
functions such as range-partitioning or radix hash partitioning. (3)
Lastly, it is also possible to directly specify the node identifier of a
target thread on each push into the flow.
4.2.2 Replicate Flow: Another flow type that DFI provides is a so
called replicate flow, which targets data processing tasks involving
data duplication, such as replicated state machines, fragment-and-
replicate join operators or data duplication for stream processing.

The performance of a naïve replication of tuples which uses
multiple RDMA operations (i.e., one for each target), will quickly
become limited by the outgoing link-speed of the source node; e.g.,
a replicate flow with 1 source and 8 targets, will have to divide
the available network bandwidth at the source, if messages are
replicated to all 8 targets on the source node. In DFI, we instead
make use of RDMA multicast such that when enabled, messages
are replicated in the network as to prevent the outgoing link of the
source(s) from becoming a bottleneck.

For some applications using replication, ordering of messages
plays an important role. An example of this is state machine repli-
cation, where the correctness depends on all replicas processing
the incoming operations in the same order. Since many networks
(including InfiniBand) do not provide this guarantee if multiple
receivers are involved [22] (even not for simple networks with only
one switch), replicate flows can be initialized to provide global or-
dering guarantees, such that all targets consume tuples out of the
flow in the same order. Details on how global ordering is imple-
mented for replicate flows in DFI are explained in Section 5.
4.2.3 Combiner Flow: The third flow type supported by DFI is the
combiner flow. The focus of the combiner flow is many-to-one
communication patterns which is typically used in aggregation
scenarios, such as a SQL aggregation or a parameter server [23]

Inner relation

worker worker worker worker

N:M Shuffle Flow (f1)

Part 1 Part 2 Part 3 Part 4 Part N...

N:M Shuffle Flow (f2)

Outer relation

Network Partition

Network Partition

Build and Probe

worker worker worker worker

while(f2_target.consume(tuple) != FLOW_END)
   hashTable.probe(tuple);

for(auto tuple : relation)
   f1_source.push(tuple);

while(f1_target.consume(tuple) != FLOW_END)
   hashTable.insert(tuple);

for(auto tuple : relation)
   f2_source.push(tuple);

Figure 2: Distributed Radix Hash Join with DFI flows. Two
shuffle flows are used to partition tuples across network,
one for each relation.

for distributed machine learning. The combiner flow supports vari-
ous different aggregations (e.g., SUM, COUNT, MIN, MAX) to be
performed on the tuples.

Again while a naïve implementation would implement the re-
duction at the target node, the network can be used to accelerate
the reduction. For example, InfiniBand offers the SHARP protocol
[13], that enables in-network aggregations for high-speed Infini-
Band networks and thus could help to mitigate when the in-bound
network of the receiver becomes a bottleneck.

4.3 Use Cases
In the following we present two distributed data processing use

cases and how they are realized through DFI: First, we discuss
distributed joins for OLAP where the aim is to reduce the runtime
by making efficient use of the available network bandwidth. Second,
we present a distributed consensus use case where the performance
criteria is low latency and high message throughput.
4.3.1 Distributed Radix Join: The distributed radix hash join is a
popular join operator due to its dominating performance [2, 3]. The
idea behind the radix hash join is to partition the input relations
into such small partitions that the resulting hash tables fit into the
CPU caches to reduce cache-misses.

In its original form the distributed radix join has a high level
of complexity since multiple sender and receiver threads need to
coordinate. For example, in [2, 3], histograms of buckets are pre-
computed in a first pass on each input table to allocate private
memory buffers for each thread on the receiver node and then use
coordination-free one-sided communication in a second pass to
shuffle the data of each input table.

We argue that with DFI, the design of a distributed radix join is
simpler while the performance is on par (and sometimes even better)
with the latest distributed radix join implementations (as will be
shown in Section 6.3). To realize the join with DFI, two bandwidth
optimized shuffle flows are used as shown in Figure 2, one for
shuffling each relation. Figure 2 also shows the pseudo-code how
tuples can be pushed into the flows during network partitioning,
and consumed at the target (i.e., receiver node) out of the flows for
the relations to either build the hash table (for the inner relation)
or probe the hash table (for the outer relation).

The shuffle flows for the join are initialized with one source
per sender thread and one target per output partition. That way
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Client Client Client Client

N:1 Shuffle Flow (f1)

submit
request

auto tuple = newRequest();
f1_source.push(tuple);

while(f1_target.consume(tuple) != FLOW_END)
   auto tuple2 = constructProposal(tuple)
   f2_source.push(tuple2);

Leaderpropose
request

Replicate Flow (f2)

Follower Follower Follower

N:1 Shuffle Flow (f3)

while(f2_target.consume(tuple) != FLOW_END)
   appendToLog(tuple);
   f3_source.push({tuple.reqid, ACK});

......

Leader

vote for
request

execute request
on vote majority

1:N Shuffle Flow (f4)

Client Client Client Client

while(f3_target.consume(tuple) != FLOW_END)
   votes[tuple.reqid]++;
   if(votes[tuple.reqid] == majority())
      executeRequest(tuple);
      f4_source.push({tuple.reqid, ACK});

Figure 3: Leader-based consensus with DFI flows. Four flows
are used to realize consensus between replicas.

the flow can used for achieving the desired partition fan-out. The
routing of tuples to the partition-specific targets is done on a per
thread level by passing a radix hash function to DFI as the routing
function. This also leads to a noticeable reduction of complexity of
the DFI join compared to the original RDMA-based distributed radix
join since the histogram computation can be completely omitted.
Moreover, the memory management of local and remote buffers is
handled in DFI.
4.3.2 Distributed Consensus: Consensus in a distributed system
describes the agreement of multiple (often asynchronous) partici-
pants on a single value, or a sequence of values, while tolerating
the presence of faulty participants. It is a fundamental primitive in
distributed computing which is needed, for example, for the reli-
able implementation of replicated state machines, leader election,
or system reconfiguration.

Classical consensus protocols [20, 27] are centered around a cen-
tralized coordinator, called leader. The leader orders concurrently
arriving requests of participants (i.e., clients) and forwards them to
a set of so called followers. The followers vote for requests that they
receive from the leader. Once the leader has received a majority
of votes (itself included), the leader can notify the corresponding
client that its request was agreed-upon. The high-level message
flow of a leader-based consensus implementation using DFI can be
modeled directly with the flows provided by DFI and is depicted
in Figure 3. Figure 3 additionally shows pseudo-code of how these
flows are used for the communication which we explain in the
following.

Clients initially send their vote with an N:1 shuffle flow to the
leader. The replicate flow is ideal to handle the communication from
the leader to its followers, as all followers receive identical messages.
The use of the RDMA multicast verbs built into DFI alleviates load
placed on the leader compared to the naïve replication of messages.
This is an interesting optimization, as the leader is typically a major
bottleneck in consensus-based systems. Once followers received
the request and voted for a result, they send the outcome back
to the leader, again using a shuffle flow. In a last step the leader
distributes the consensus-outcome to the client using the client IDs
as the shuffle key.

An interesting optimization that DFI provides is to use the op-
timization option for global ordered multicast (also referred to as
ordered unreliable multicast - OUM). In particular, Li et al. [22]
propose a single round-trip consensus protocol based on OUM.

Network

Target

Source 1

Source 2

RDMA Target-side
buffer

Flow 
push

Flow 
consume

Source-side
buffer

push (tuple)
   curSegment = sendRing.curSegment;
   curSegment.append(tuple)
   if (curSegment.isFull())
      curSegment.setConsumable();
      transferByRdmaWrite(curSegment); //async
      sendRing.advanceSegment();

consume (&tuples)
   while (!curSegment.isConsumable())
      curRing = nextRing();
      curSegment = curRing.curSegment;
   tuples = curSegment.payload;
   curRing.advanceSegment();

Figure 4: DFI flow implementation using ring buffers. In DFI
flows, each source allocates a private target-side ring buffer
to minimize coordination overhead.

While this work focuses on Ethernet-based systems, to our knowl-
edge, DFI is the first system that can provide these semantics in the
context of InfiniBand.

As we show in Section 6.3.2, using the ordered multicast signifi-
cantly improves both throughput and latency compared to conven-
tional consensus protocol designs using native RDMA that follow
more classical consensus designs.

5 Flow Implementation
In this section, we discuss our implementation of DFI for a recent

RDMA-capable InfiniBand EDR hardware stack to showcase the de-
sign choices of how to enable the key design principles discussed in
Section 3. In future, we envision that different vendors can provide
an efficient implementation of DFI for their network technology.

5.1 Flow Execution
The key design principles listed in Section 3 impose challenges

for how the data transfer between the sources and targets is realized
which are pivotal for distributed data processing. In the following,
we give an overview of the flow execution (Section 5.1) and the
buffer design (Section 5.2) for bandwidth optimized shuffle flows.
Optimizations for latency-optimized flows and other flow types
will be discussed at the end of this section.

On a high-level, to achieve the design goals listed in Section 3 for
shuffle flows, DFI uses a private send/receive buffer for each pair of
source and target threads as illustrated in Figure 4. The design of
source- and target-side buffers follows a ring-based design where
each ring is composed of a configurable number of segments and
is allocated as one consecutive region in memory. The segment
itself can be sized to contain a single tuple up to a batch of tuples.
Therefore, the segment size is a tuning parameter that allows DFI to
either optimize for bandwidth or latency independent of the tuple
sizes used by the application.

One key question is how such a segmented ring design enables
pipelining of tuples with low-overhead synchronization. In order
to achieve pipelined data transfer between buffers (i.e., a decou-
pling of senders and receivers), one-sided RDMA writes are used
to copy data asynchronously from sources to targets. This asyn-
chronous data transfer using RDMA writes is implemented by the
transferByRdmaWrite call in Figure 4. This method also imple-
ments the synchronization with the target buffer to not overwrite
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Figure 5: Target-side buffer structure. The segment ring data
structure is a densely allocated memory region split up into
segments. Segments are appended with small footers to han-
dle coordination and fill grade of each segment.
any segments that has not been consumed yet. The synchroniza-
tion is based on the metadata of each segment as we discuss next
in Section 5.2. For latency-optimized flows (see Section 5.3), we
instead use a credit-based approach to further reduce the overhead.

In setups with a very high number of sources and targets, a de-
sign with private buffers for each source / target combination can
by first sight lead to high memory consumption. In DFI, however,
applications can effectively reduce the memory consumption by re-
ducing the number of segments per ring, since only a few segments
are needed to achieve good pipelining and source / target decou-
pling. As we show in our evaluation, this can efficiently reduce the
memory overhead while only affecting performance minimally.

Other approaches also employ a circular buffer for communi-
cation over RDMA, e.g., such as FaRM [9, 10]. While our buffer
design shares some similarities with the buffer design of FaRM
(e.g., using one-sided writes for data transfer), there are noticeable
differences: (1) The aim of the FaRM design is only latency sen-
sitive message-passing and hence does not provide a bandwidth
optimized communication primitive. (2) The buffer design of FaRM
targets only shuffle flows but no other flow types such as replication
flows or combiner flows, which require additional optimizations as
we discuss in Section 5.4.

5.2 Buffer Design
In the following we present further details of the buffer design

for the bandwidth optimized setting. We first explain the design of
the outgoing buffer on the source side before we then discuss the
design of target-side buffers.
Source-side Buffer: The main difference is that source-side buffers
use much fewer segments than target-side buffers to reduce the
memory overhead of buffers. Smaller send buffers do not violate
our goal to decouple sources and targets since data is sent directly
once it is available. However, since data out of source buffers is
transferred asynchronously we need more than one segment. For
this reason, we need to ensure that an RDMA write of a segment
has been carried out before the segment can be reused to avoid
data loss. For achieving this, the source-side buffers use signaled
RDMA writes, a technique to check if the asynchronous transfer is
completed. However, in order to reduce the number of these checks,
as they are quite expensive, the source only issues a signaled write
once it wraps around the buffer.
Target-side Buffer: Target-side buffers use a slightly different design
since sources and targets need to synchronize; i.e., targets need to
decide which segments are ready to be read while sources must
decide whether a remote segment was consumed already and thus

can be reused by the source. For the synchronization each segment
defines a footer which holds metadata about the segment as shown
in Figure 5. The flags in the footer indicate whether a segment is
writable or consumable. In a writeable state, a segment is free to be
written by the source and consumable state indicates that the target
can consume the tuples stored in the segment.

Unfortunately, an RDMAwrite of one segment is not guaranteed
to be persisted atomically into remote memory since the segment
might be split into multiple DMAs by the remote NIC. In order to
avoid a checksum per segment, we make use of the fact that DMAs
of the remote NIC are guaranteed to be written in an increasing
memory order [9, 24]. Therefore, DFI places the metadata which
indicates the state whether the segment is consumable or not after
the payload of the segment. This ensures that when the target has
detected a change of segment state, the payload of the segment is
completely written.

From a target perspective, the footer is read when the target
thread calls the consume function, which returns a pointer to the
payload if the state is consumable and sets the state to writable
on subsequent consume calls. Thereby allowing the application
to process the returned tuples directly without memory copy. To
write new segments to the target-side buffer the source first needs
to verify if the current target segment is free and ready to reuse.
Therefore, the source reads the footer of the remote target segment
with RDMA reads to check if the state is writeable.

To efficiently read the remote segment states we pipeline the
write of the current segment with the read of the footer of the next
segment. In other words, while we transfer a source-side segment
to the target-segment 𝑛 we immediately read the footer of the target
segment 𝑛 + 1. Therefore, upon the next push call on the source, if
the remote segment is detected to be writeable, the RDMA write
can be executed directly without waiting. The RDMA write of the
source includes the update of the footer for the target (i.e., setting
its state back to consumable). If the remote segment is detected to
be not writeable, the source periodically polls the segment footer
that should be written next with a small random backoff, to avoid
overloading the network with read requests.
Optimizations: For the buffer design, we use various optimizations
for efficient RDMA. For instance, our design increases the chance
to exploit DDIO which allows DMA data to be directly written to
CPU caches. Additionally, we use common RDMA optimizations
like inlining small messages and selective signaling. Moreover, in
both buffers (source- and target-side), we additionally enable two
performance-relevant settings in the InfiniBand stack: (1) We dis-
able expensive spin locks in the RDMA library when using private
buffers. (2) We use huge-pages for RDMA to avoid the high costs
of TLB misses in the RDMA NIC.

5.3 Latency Optimization
The previously presented flow implementation is centered around

maximizing bandwidth utilization. However, for some classes of
distributed data processing systems (e.g., for OLTP or consensus)
achieving low latency for data transfer is crucial. Hence DFI pro-
vides an optimization option for latency. This requires several
changes in the buffer design and the overall execution flow.

A naïve way to support low latency would be to simply reduce
the segment size of buffers to the size of an individual tuple and rely
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Figure 6: Ordering example for replicate flows: Receive re-
quests (R) are initially posted and stored in the receive list.
Subsequent consume calls detect incoming segments and in-
sert segments into the next list in order. Messages are re-
turned in order from next list.

on the same synchronization protocol between sources and targets.
However, this implies that sources would need to check the footer
of the next segment before every RDMA write to make sure that
the segment is writable. In contrast to the bandwidth optimized
version in which the cost of the additional read is amortized by
the batch of tuples an additional read for each tuple transferred
incurs high overhead. Hence, we use a different design to support
low-latency data transfer with low overhead.

While the footer is still used by the target to decide if a segment
is consumable, we use a credit system to decide howmany segments
a source can write without any synchronization. Therefore, a credit
counter on the target side is used which is initialized to the number
of segments in the ring, to reflect the number of tuples a source
can write without overwriting tuples that haven’t been consumed
by the target yet. The credit counter is incremented by the target
each time a tuple is consumed. The source thread holds a copy of
the remote credit counter which is decremented on every RDMA
write of a segment. Moreover, the remote credit is read once the
local credit counter reaches a certain threshold.

5.4 Other Flow Types
The replicate and combiner flows employ similar buffer struc-

tures as the shuffle flow but introduce important optimizations.
Replicate Flow (no ordering): The replicate flow sends a tuple to a
group of targets. In order to avoid that the outgoing network link of
the source becomes a bottleneck, we exploit RDMAmulticast which
replicates tuples in the switch. However, RDMA multicast relies on
two-sided communication over unreliable transport, which leads
to changes in the buffer design and the control flow. Instead of
detecting incoming messages on the target side by polling directly
in main-memory, for two-sided RDMA primitives the target has to
poll a completion queue. To avoid high overhead of coordinating
for each RDMA send, we implemented a credit score for sources
(similar as the one we used for latency-sensitive flows) to know
for all targets of a replicate flow, how many messages can be sent
without coordination. For this, we initially pre-populate the receive
queues on the target sides with as many receive requests as given
by the credit score and as soon as a segment has been written into
the target-side buffer a new receive request will be added to the

receive queue once the consume call on the target-side buffer has
returned the payload.

For coordinating credits at the source side we employ a back-flow
from targets to source. This back-flow is used by targets to inform
sources how many messages have been received which allows the
sender to increase its credit score accordingly. Moreover, we add
a sequence number to each segment such that targets can report
missing segments to sources together with the credit back-flow.
Lost segments are requested if a configurable timeout is reached.
One important issue is that segments might arrive late (which were
reported as lost by the target). In DFI this is handled by the target
which filters out duplicate segments.
Replicate Flows (globally-ordered): DFI can also provide global or-
dering guarantees on replicate flows. Global ordering is a common
primitive for distributed systems which, however, often needs to
be implemented on the application layer. For instance, distributed
consensus requires a global ordering as described in Section 4.3.2.
DFI guarantees global ordering by implementing a so-called tuple
sequencer, in which sources append sequence numbers to segments
using an RDMA fetch-and-add on a global counter. With the advent
of programmable switches, a tuple sequencer can instead be im-
plemented in the network as shown in [22] to avoid the additional
round-trip for the RDMA fetch-and-add. However, as we see in our
experiments in Section 6.3, already the naïve solution with a global
counter can provide benefits for consensus over solutions which
rely on flows without ordering guarantees.

While a tuple sequencer adds global sequence numbers to seg-
ments, they can still arrive out-of-order at the different targets.
On the target-side we thus have to ensure that segments arrive in
the same order by reordering the incoming potential out-of-order
segments. Figure 6 exemplifies how reordering is implemented on
the target side. For reordering, two linked lists are used: a receive
list for storing incoming segments in the arrival order and a next
list for ensuring ordering.

In the example in Figure 6, on the first consume call, segments
with sequence number 3 and 1 have been received. The head of
the receive list (i.e., 3) is "moved" to the next list which involves no
data copy but only pointer updates and the segment with number
1 is returned. For the second consume call, in the example, the
segment with number 2 has arrived and is directly returned while
the segment 3 is kept in the next list which is then returned for
the last consume call. Losses in this protocol are detected (as be-
fore) through gaps in sequence numbers (in case a configurable
timeout is reached). Optionally, we only notify the application on
a consume call of gaps and its left up to the application to han-
dle re-transmission (which is a feature we use for our consensus
implementation).
Combiner Flows: A last flow type supported in DFI is the combiner
flow. The flow directly follows the design of a shuffle flow (using
a N:1 topology) but adds functionality to aggregate tuples in the
target buffer using an aggregate function/ group-by specification
as explained in Section 4. An interesting optimization is to use
in-network-processing capabilities such as the SHARP protocol
that enables in-network-aggregation in a switch to avoid incast
congestion on the in-going link to the target of a combiner flow.
However, implementing this is an interesting avenue of future work.
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Figure 7: Shuffle flow performance. DFI achieves max. bandwidth and low latency for various scenarios.

6 Experimental Evaluation
We evaluated DFI on three different levels. First we look at the

efficiency of DFI in terms of how well the high-level interface uti-
lizes the network compared to low-level RDMA verbs. Next, we
provide a detailed comparison of DFI and MPI and argue that MPI is
the wrong abstraction for data processing systems. Lastly, we eval-
uate DFI for two typical use cases in data processing systems and
compare the implementations to existing state-of-the-art solutions.

In all experiments we use the notation (N:M) to indicate the
number of servers involved in a flow topology. The number of
threads per server is reported separately per experiment.
Evaluation Environment: All experiments were conducted on an 8
node cluster where 6 of the nodes are equipped with two Intel(R)
Xeon(R) Gold 5120 CPUs (14 cores) and 512 GB main-memory,
and 2 nodes equipped with two Intel(R) Xeon(R) Gold 5220 CPUs
(18 cores). Hyper-threading is disabled for all nodes. Each node is
equipped with two Mellanox ConnectX-5 MT27800 NICs (Infini-
Band EDR 4x NICs, 100 Gbps), connected to one SB7890 InfiniBand
switch. The operating system is Ubuntu 18.04.1 LTS, with Linux
4.15.0-47 kernel on all nodes. DFI is implemented with C++17 and
compiled with gcc-7.3.0.

6.1 Experiment 1: Efficiency of DFI
The first experiment shows the efficiency of DFI compared to

low-level RDMA verbs.
6.1.1 Shuffle Flows: In the following, shuffle flows are evaluated
with bandwidth and latency optimization and lastly, a scale-out
experiment is presented.
Bandwidth-Optimized: Our first experiment evaluates performance
for the shuffle flow from 1 server to 8 servers with varying tuple
sizes. Further, we vary the number of sources (threads) pushing
tuples into the flow. The batch size for the bandwidth optimized
version in our experiments is 8 KiB. We choose a batch size of 8
KiB as this offers a good tradeoff between network bandwidth and
time until the batch is filled.

Figure 7a reports results for the bandwidth-optimized flow. As
we see, in most settings we achieve the full network bandwidth.
Only, the single-threaded scenario shows some overhead since
batches must first be filled on the source side with individual tuples
before they can be transferred to the target. This overhead can,
however, be amortized by using more threads per server as shown
in Figure 7a. Due to the efficient multi-threading support of DFI,
we see that from two source threads on, the bandwidth is limited
by the speed of the outgoing link (100 Gbps / 11,64 GiB/s - red line)
for tuple sizes larger than 128 B. Moreover, when using 4 threads
the maximal bandwidth is achieved independent of tuple sizes.

Latency-Optimized:We additionally evaluated the shuffle flow that
implements latency optimizations. For measuring latency, two shuf-
fle flows are used to implement a request and response pattern to
measure the round-trip time between two nodes. To show that DFI’s
buffer design only adds minimal latency overhead, we compare the
latency of DFI to ib_write_lat2 which is a standard tool for perfor-
mance testing that uses low-level verbs to implement a round-trip
between a sender and a receiver node. For DFI, we additionally
used a varying number of receiving servers (1, 4, and 8) to observe
the effect on latency when shuffling to various destinations.

As we see in Figure 7b, the median latency of DFI for one
full round-trip only adds minimal overhead when compared to
ib_write_lat which is due to buffer. Moreover, keep in mind that
DFI provides a high-level abstraction and thus not only reduces
application complexity but also provides several optimizations to
applications. This includes an efficient overlapping of compute and
communication as well as many other optimizations such as effi-
cient replication and ordering guarantees. Aswe show in Section 6.3,
this enables DFI to provide superior performance in different use
cases when compared to existing approaches that are using other
interfaces (low-level RDMA verbs or MPI).

Moreover, the advantage of DFI compared to plain RDMA is the
encapsulated memory management, which allows applications to
use RDMA transparently without hand-tuned memory manage-
ment while still achieving optimal performance. The experiment
shows that this abstraction hardly incurs any overhead compared to
ib_write_lat. For multiple targets the latency of DFI is only slightly
higher due to the internal routing in the shuffle flow. Multiple tar-
gets are not supported by ib_write_lat though (i.e., ib_write_lat uses
only one target in this experiment).
Scale-out: Since data processing systems often need to scale out to
many nodes, we conducted a scale-out experiment for the shuffle
flow, increasing the number of source and target servers. Moreover,
we use 14 sources and targets on all nodes which in total gives
12544 unique source/target connections for the maximal number
of nodes used. As shown in Figure 7c, DFI scales linearly with the
number of nodes (as indicated by the 𝑥-axis), effectively increasing
the aggregated bandwidth with the link-speed of each added node.
6.1.2 Replicate Flows: Next we benchmarked the replicate flow in
terms of achievable bandwidth, with and without multicast and
finally the latency behavior.
Bandwidth and Multicast Optimization:We tested the replicate flow
bandwidth for two optimization settings, naïve one-sided replica-
tion and multicast. The evaluation was conducted by replicating
data from 1 node to 8 nodes. In Figure 8a, the reported bandwidth

2https://github.com/linux-rdma/perftest.
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Figure 8: Replicate flow performance. DFI achieves max. bandwidth and low latency for various scenarios.
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Figure 9: Combiner flow with sum aggregation (8:1). Aggre-
gated sender bandwidth for various scenarios.

already achieves the practical network limit of the sender with 1
thread and tuples bigger than 64 B. In comparison to the shuffle
flow bandwidth in Figure 7a, the replicate performance reaches max.
bandwidth earlier due to network messages being replicated with
one-sided writes that are issued in parallel by the NIC, reducing
the per-tuple overhead.

As we see in Figure 8a, the naïve replication is limited by the net-
work speed of the sender. However, the replicate flow also provides
a multicast optimization that replicates messages in the switch.
With the multicast optimization (Figure 8b) the bandwidth goes
beyond the 100 Gbps (11,64 GiB/s) limit of the outgoing sender
link and reaches up to 64 GiB/s. Using more source-threads on the
sender node, however, does not yield better performance as the NIC
inhibits bad multi-thread scalability within same multicast group.
Latency Optimization: For evaluating the latency for the replicate
flow, we conducted an experiment where a source replicates a
request to 8 targets and measures the time for it to get replies
from all. The reported latency for naïve and multicast replication is
shown in Figure 8c. The naïve (one-sided) replication achieves the
lowest latency with only 1 target, but increases with more targets.
For multicast, though, the increase in latency from 1 to 8 targets is
much smaller and outperforms the naïve implementation.
6.1.3 Combiner Flows: The last flow evaluated in this experiment
is the combiner flow. Figure 9 reports the aggregated sender band-
width for a combiner flow with a sum aggregation. As seen for
2 and 4 threads, the bandwidth becomes limited by the in-going
link to the target node. As an avenue of future work, the advent of
in-network processing such as SHARP [13] could be used to further
speed up the aggregation beyond the limits of the in-going link.
6.1.4 Memory Consumption: In order to provide insight to the
degree of memory consumed through DFI, we observed thememory
allocated in the scale-out experiment of the shuffle flow in Figure 7c.
This setup is the most memory consuming one since each pair of
source/target threads uses a private send/receive buffer.

For the smallest setup with only 4 source and 4 target threads per
node in a cluster with two nodes in total, DFI consumes just 16 MiB
per node3. Moreover, when increasing the setup to 8 nodes where
each node has again 4 source and 4 target threads, the memory
consumption grows only to 64MiB. For the largest setup in Figure 7c
(14 source & target threads and 8 servers in total) DFI consumes
785.5 MiB in total on each node.

However, as discussed in our experiments before, 4 source/target
threads per node are sufficient at the moment to saturate the high
bandwidth provided by the InfiniBand network in our setup. More-
over, the size of buffers in DFI are configurable. Hence, even smaller
memory footprints can be achieved. As an example reducing the
number of segments to 50% (i.e., 16 per buffer) the performance on
8 nodes just decreases by 2.7%, and further reducing the size to 25%
(i.e., 8 per buffer) decreases performance by 8%.
Key Insights (Exp. 1): Our results show, that DFI flows can pro-
vide a high-level abstraction with no or only negligible overhead
compared to low-level RDMA verbs.

6.2 Experiment 2: DFI vs. MPI
In the following experiment we evaluate the performance of

MPI and DFI in various settings. First we will show point-to-point
performance for single-threaded and multi-threaded setups. Next
we look at the collective functions provided by MPI and compare
their usage for a typical shuffle scenario. For MPI we use the latest
version (4.0.3rc4) shipped with HPC-X (2.6.0) for our InfiniBand
hardware. MPI is therefore highly optimized to make use of the
RDMA primitives offered by the network.
6.2.1 Point-to-Point Primitives: As described in Section 2, MPI is
process-centric, meaning it achieves parallelism by executing parts
of the program in multiple processes on the same server. We there-
fore first compare MPI and DFI in a single-threaded setup before
we then study the multi-threaded extensions provided by the MPI
version of our InfiniBand deployment.
Single-threaded: Figure 10a reports the runtime for transferring a
fixed table size (16 GiB). The MPI_Send and MPI_Recv primitives
are used for sending the various tuple sizes, thereby using both
MPI and DFI on a tuple-basis. Since MPI does not support any
bandwidth/batching optimizations, the runtime is high for lower
tuple-sizes since the network is inefficiently used. The bandwidth
optimization for DFI makes efficient use of the network and there-
fore achieves a small runtime already for small tuple sizes.
Multi-threaded: Data processing systems typically usemulti-threading
(and not multi-process) to achieve parallelism while being able to

3In DFI, each buffer uses 32 segments each having a 8 KiB size in its default
configuration.
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Figure 10: MPI vs. DFI - point-to-point runtime
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Figure 11: MPI vs DFI - collective shuffling (8:8)

share data between threads within the same virtual memory space.
As such we evaluate the multi-threaded performance for DFI and
MPI (using MPI_THREAD_MULTIPLE where multiple threads may
call MPI primitives at once with no restrictions).

Figure 10b reports the runtime with an increasing number of
threads. While DFI scales with the number of threads, the perfor-
mance for multi-threaded MPI gets worse (red line). We analyzed
this behavior and found that for data-heavy transfers (which MPI
was not designed for), even a few threads lead to high internal
contention on latches of MPI which causes the significant drop in
performance.

The alternative in MPI for achieving parallelism per node is to
use multiple processes instead of multiple threads per server. As we
show in Figure 10b (green line) this leads to a better scalability than
the multi-threaded MPI. However, multi-process solutions come at
the cost that common data structures need to be accessed via (more
expensive) shared memory.
6.2.2 Collective Primitives:MPI also offers primitives that encapsu-
lates communication between multiple nodes. Since MPI provides a
rich library of collectives and we cannot provide an analysis in this
paper which covers all collectives, we focus on the MPI_Alltoall
collective since it resembles in a closest manner the semantics of
an N:M shuffle flow of DFI.
Shuffle (Pipelined):We first look at the shuffle performance when
using MPI in a streaming-based manner (i.e., we shuffle data in
mini-batches with a size of 8 tuples - on average one tuple per
target). In this experiment, only one thread per node is used (for
MPI and DFI) which scans a table and shuffles the tuples based on
their keys. Multi-threading in MPI does not provide any benefit
as we have seen before. For shuffling, we are using MPI_Alltoall
(position-based) which uses a send buffer of the size of all nodes.
As Figure 11 shows, the runtime of MPI for smaller tuple sizes is
very high since the network is not utilized efficiently. However, as
the tuple size increases, the bandwidth approximates that of DFI.
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Figure 12: MPI vs DFI - collective shuffling (8:8) - One node
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Shuffle (Batched): To increase the network efficiency for MPI, we lo-
cally pre-shuffle the table on the shuffle key and invoke aMPI_Alltoall
function for the complete batch.While this improves the bandwidth,
collective functions are then susceptible to straggling behavior.

We evaluated the performance impact of MPI and DFI with
one straggling node. To simulate a straggler, we decrease the CPU
frequency of one of the nodes. The result is shown in Figure 12,
where both the table sizes and straggling are varied. The increase
of runtime for MPI with a straggling node (i.e., 𝑠 = 0.5) comes from
the fact that collective functions are blocking until all data is ready
to be sent, and therefore limits the pipelining possibilities.

This is different for DFI. While DFI is also affected by straggling,
it can constantly send data while the MPI implementation only
starts the transfer once all data is available. Hence, DFI better over-
laps the communication with the computation and therefore the
straggling effect is less severe.
Key Insights (Exp. 2): In this experiment, we compared DFI to
MPI. The experiments confirmed our speculations: (1) MPI nei-
ther provides efficient multi-threading, (2) nor does MPI allow to
efficiently overlap compute and computation and hence support
efficient pipelining.

6.3 Experiment 3: Use Cases
In the last experiments we evaluate DFI by implementing the

two use cases we discussed in Section 4.3.
6.3.1 Distributed Joins: Distributed joins are crucial operators in
OLAP due to large amounts of data having to be transferred across
the network, and therefore a good candidate to evaluate bandwidth-
optimized flows of DFI.
Radix Join:We implemented a distributed radix hash join on DFI
and compared its performance to a state-of-the-art implementation
for RDMA using MPI [2]. Both implementations employ the same
optimizations (e.g., write-combine buffer in partitioning phase and
tuple compression). However, the MPI join of [2] uses multi-process
parallelism while our join uses multi-threading instead. Figure 13
shows the average runtime of the two joins for all 8 nodes.

The DFI radix join achieves the best runtime mainly due to two
design choices of DFI. At first, the DFI radix join does not need to
first compute a global histogram of the partition buckets. The MPI
radix join in [2] makes use of one-sidedMPI_Put primitives. In order
to achieve coordination free writes, it thus has to compute exclusive
writing offsets for each partition using one additional pass. Different
from this, DFI encapsulates the memory management through our
buffer design which makes the additional pass superfluous.
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The other reason for the runtime gap is due to the synchroniza-
tion barrier needed in the MPI radix join after the network partition
phase. Here, the join algorithm needs to make sure that all data
has arrived before starting to process the local partitioning. While
the data in this experiment is uniformly distributed, some runtime
variance between multiple parallel workers still exists and is more
pronounced in high-speed networks. This synchronization is not
needed with DFI, since incoming tuples can already be processed
when they arrive in a streaming-wise fashion.
Join Adaptability: Flows in DFI offer a high-level abstraction which
encapsulates the data transfer of applications. As a result, it is trivial
to adapt algorithms to use a different communication pattern. To
demonstrate this, we adapted our radix hash join implementation
to a fragment-and-replicate join variant which uses one replicate
flow that replicates the inner table on all nodes. Figure 14 shows the
runtimes of the three different join implementations with a smaller
inner table (1000× smaller than the outer table). The replication of
the small inner table is comparably cheap compared to shuffling
the big outer table over the network. Overall, for this setup this
helps to further reduce the overall runtime by another 20%,
6.3.2 State Machine Replication: In this experiment, we imple-
mented a simple key-value store that replicates data using a consen-
sus protocol. For the experiment, we used two different consensus
protocols, classical Multi-Paxos [20] and NOPaxos [22]. We mod-
eled the normal, failure-free operation of Multi-Paxos as depicted
in Figure 3. For NOPaxos, we implemented its normal operation pro-
tocol, which relies on the OUM primitive that can be provided by
DFI’s replicate flow, as well as its gap agreement protocol to detect
lost messages. We compare both implementations with DARE [28],
a state-of-the-art replicated key-value store that is based on a hand-
crafted consensus protocol and heavily relies on one-sided RDMA.

We deployed all approaches with five replicas (a leader and four
followers). Load was generated by six clients distributed across
three separate nodes. Clients submitted 64 byte sized requests using
YCSB’s read-dominated workload [7] (95% reads and 5% writes).
The results are shown in Figure 15.

The two DFI-based implementations consistently outperform
DARE in our settings in both achieved throughput and latency. This
is caused mainly by DARE’s sequential design. First, each DARE
client cannot submit a new request until it has received the result
from its previous request, which limits its achievable throughput.

Second, DARE’s write protocol serializes requests. While this
limitation is mitigated by separately batching reads and writes, a
mix of both request types frequently interrupts batches [32]. This
is confirmed by DARE’s own evaluation [28].

Our Multi-Paxos and NOPaxos implementation exhibit near-
identical response latencies as long as they are not saturated. This
appears counter-intuitive at first, as Multi-Paxos requires four mes-
sage delays to respond to a client, whereas two messages delays
suffices for NOPaxos as long as no messages are lost. However,
fetching a global sequence number from the tuple sequencer of the
ordered replicate flow incurs an additional two message delays.

For a load higher than 700k requests/s, we see benefits of our
NOPaxos over our Multi-Paxos implementation. Under this load,
the leader in Multi-Paxos becomes saturated as it has to repeat-
edly collect responses from a majority of replicas. In contrast, in
NOPaxos the clients themselves collect these responses. This alle-
viates the burden placed on the leader in Multi-Paxos, which leads
to stable response latencies in DFI’s NOPaxos up to even higher
request rates of almost 1.5M (95th percentile).
Key Insights (Exp. 3): In summary, DFI does not only achieve a
better performance for distributed joins and consensus than state-
of-the-art, but also offers an ease-of-use high-level abstraction to
implement efficient solutions with a low code complexity.

7 Conclusions
In this paper, we presented DFI, a new data-centric interface for

fast networks. With our implementation for InfiniBand we have
shown that DFI adds only minor overhead compared to low-level
abstractions such as RDMA verbs. Moreover, by implementing two
use cases, we demonstrated that DFI can efficiently support data-
centric applications with different requirements (high-bandwidth
vs. low-latency) at high performance.

In future, we plan to integrate further useful extensions into
DFI flows such as fault-tolerance as well as elasticity of flows to
add/remove nodes at runtime. Furthermore, by open-sourcing our
implementation, we hope to stimulate not only follow-up research
but also allow that commercial vendors will provide a DFI imple-
mentation also for other high-speed network stacks.
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