
EFA: A Viable Alternative to RDMA over InfiniBand for DBMSs?
Tobias Ziegler

Technical University
Darmstadt

Dwarakanandan B. M.
Technical University

Darmstadt

Viktor Leis
Friedrich-Alexander-

Universität
Erlangen-Nürnberg

Carsten Binnig
Technical University

Darmstadt

ABSTRACT
RDMA over InfiniBand offers high bandwidth and low latency
which provides many benefits for distributed DBMSs. However, in
the cloud RDMAover InfiniBand is still not widely available. Instead,
cloud providers often invest in their own high-speed networking
technology and start to expose their own native networking in-
terfaces. For example, the largest cloud provider, Amazon Web
Services (AWS), introduced instances with Elastic Fabric Adapter
(EFA) in 2018. In this paper, we aim to analyze EFA as an alternative
to RDMA in the cloud by performing an in-depth and systematic
evaluation. As a first contribution, we describe the EFA stack and
summarize the main differences to RDMA over InfiniBand. Second,
we evaluate the performance of EFA and compare it with RDMA
over InfiniBand in a set of reproducible benchmarks. Third, based
on our evaluation we derive lessons learned for DBMS designers.

ACM Reference Format:
Tobias Ziegler, Dwarakanandan B. M., Viktor Leis, and Carsten Binnig.
2022. EFA: A Viable Alternative to RDMA over InfiniBand for DBMSs?.
In Proceedings of (DaMoN ’22). ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
InfiniBand offers low network latency. Remote Direct Memory
Access (RDMA) over InfiniBand offers single-digit microsecond
network latencies at extremely high bandwidth. As such RDMA
over InfiniBand had a tremendous impact on distributed machine
learning [16, 26, 36, 48], high performance computing [24, 32, 34],
and distributed database systems [3, 7, 17, 18, 21, 23, 30, 31, 35, 44–
46, 49–51, 53]. In fact, distributed system designs that were previ-
ously thought to be inefficient had to be re-evaluated [7, 44, 49, 53].
For instance, distributed shared memory architectures are becom-
ing increasingly common due to the low network latencies. This
is evidenced by several distributed database systems that expose
their aggregated memory via RDMA such as FaRM [5, 6, 42], NAM-
DB [49], or Tell [25]. Unfortunately, to get the benefits of RDMA,
specialized and expensive hardware is required.

InfiniBand is not widely available in the cloud. At the same
time, many companies transition from on-premise to the cloud and
are dependent on currently-available cloud offerings. Unfortunately,
even though cloud providers offer hundreds of heterogeneous in-
stance types, InfiniBand is not widely available in public clouds.
In fact, of the three major cloud providers, only Microsoft Azure
offers InfiniBand for a very limited set of instance families [29] (i.e.,
instance types of H, HB, HC, and some of the N series). This limited
availability takes away one of the main benefits of the cloud; a broad
hardware landscape to satisfy every application requirement. And

DaMoN ’22, June 12–17, 2022, Philadelphia, USA
2022. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

although several vendors offer networking that achieves the same
bandwidth as RDMA over InfiniBand (100 Gbit), the low network
latencies of InfiniBand are still unmatched.

AWS’s low latency network EFA. As an alternative to RDMA
over InfiniBand, in 2018 the largest cloud provider, Amazon Web
Services (AWS), introduced instances with Elastic Fabric Adapter
(EFA). EFA is a network interface for Amazon EC2 instances that is
specifically designed to achieve low latencies in the cloud. Today,
EFA is widely available in AWS, and Amazon presently offers 15
instance families with EFA support [39] to satisfy different applica-
tion requirements, e.g., memory optimized (r5dn, r5n) or storage
optimized instances (i3en).

No systematic evaluation of EFA. Surprisingly, even though
EFA has become broadly available in AWS, there has not yet been a
systematic evaluation of this technology from the data management
community. The limited research that addresses EFA was driven
by the HPC community and specifically geared towards MPI in
distributed HPC applications [4, 41, 47]. However, MPI is a higher-
level library on top of the EFA networking stack and was built
with different assumptions that do not necessarily match those of
data-intensive systems [1, 22, 44]. Additionally, there are no official
hardware specifications published by AWS which makes it difficult
to optimize a system for utilizing the hardware optimally. Therefore,
the following question remains: Can EFA be a viable alternative to
RDMA over InfiniBand for data-intensive systems?

Contributions. In this paper, we answer this question by per-
forming an in-depth systematic evaluation. First, we describe the
EFA stack and highlight qualitative differences to RDMA over In-
finiBand which we think is an already highly valuable contribution
for system design since today the information about EFA is scat-
tered across many resources, Second, we evaluate the performance
of EFA and compare it with RDMA over InfiniBand in a set of re-
producible microbenchmarks. Third, based on our evaluation we
derived lessons learned that can be used by system designers to
utilize EFA in data-intensive systems.

2 ELASTIC FABRIC ADAPTER
In this section, we describe the EFA stack as shown in Figure 1.
We do this from the bottom up, starting with the hardware and
Amazon’s Scalable Reliable Datagram (SRD) protocol. Afterwards,
we move on to the software layers ibverbs and libfabric.

2.1 SRD: A Reliable and Unordered Protocol
SRD is reliable. The foundation of EFA is SRD, a proprietary net-
work protocol that provides reliable but unordered communication
on top of commodity Ethernet switches [41]. Of course, reliability
is not unique to SRD as many common protocols, including TCP/IP
and reliable connected RDMA, guarantee reliable packet delivery.
However, unlike existing Ethernet protocols such as TCP/IP, SRD is

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

System
Libfabric
ibverbs

EFA driver kernel

hardware

user-space

AWS Nitro Card
SRD

Ethernet
Switch

data operations
(kernel by-pass)

(optional)

MPI

Figure 1: EFA Stack: Software and Hardware.
purpose-built for Amazon’s data centers. Therefore, Amazon con-
trols the hardware SRD operates on, which in turn enables them
to implement SRD’s reliability efficiently in hardware (in the AWS
Nitro network cards [38]) rather than in software.

SRD is out-of-order. Moreover, unlike other reliable protocols
that often guarantee in-order delivery, SRD has out-of-order deliv-
ery. There are two main reasons for this decision: (1) Only a few
applications require in-order delivery and thus the application layer
should handle in-order delivery if needed. (2) Out-of-order delivery
reduces tail latencies. This is because in-order delivery may cause
head-of-line blocking [41]. Additionally, to avoid hot paths in the
network and thus reduce the chance of packet drops, SRD packets
are sent across multiple network paths. Thus, out-of-order delivery
is a direct consequence of sending packets across multiple paths,
and enforcing the order would require large intermediate buffers
or dropping out-of-order messages.

2.2 Ibverbs: Low Level Interface
SRD is exposed to the application via the ibverbs library. Ibverbs
is the same library that allows user-space processes to use RDMA
primitives to perform high-throughput, low-latency network oper-
ations on InfiniBand. The fact that EFA and RDMA over InfiniBand
share the same low-level library is no coincidence because EFA
closely resembles the InfiniBand verbs specification [41]. The li-
brary itself is split into a control path and a data path.

Control path. The control path is implemented through system
calls to the kernel, which further calls the low-level EFA driver
depicted gray in Figure 1. The control path creates, modifies, queries,
and destroys resources that are needed for connection setup and
communication. Because the control path may interact with the
kernel, those operations are commonly avoided in the hot path.

Data path. The data path avoids the kernel and network stack
completely and instead interacts directly with the hardware. The
reason for kernel and network stack bypass is that the traditional
kernel network stack was shown to be prohibitively expensive and
thus ill-suited for high-performance networks [3, 8]. This is evident
by the rise of available frameworks such as DPDK [33], mTCP [15],
or eRPC [20]. Furthermore, ibverbs is designed to provide zero-copy
and asynchronous networking.

Asynchronous networking. To implement asynchronous net-
working two designs are possible: (1) Copy data from the applica-
tion buffer into an intermediate buffer and return to the application.
Thus, the application buffer can be reused instantly. However, this
approach comes with the overhead of copying data and is often
prohibitively expensive [8]. (2) To avoid copies, modern network
interfaces get the data buffer from the application and notify the
application when data is actually sent, via traditional synchroniza-
tion mechanisms such as completion queues. Unlike in the first

option, the buffer cannot be immediately reused but only after the
completion event is received.

Send/Receive queues. EFA follows the second approach: send/
receive queues with the respective completion queues. (1) The send
queue is used by the sender to issue a send operation that returns
immediately to achieve asynchronous networking. (2) The receive
queue is used by the receiving side to issue receive requests. A
receive request instructs the network interface card (NIC) in which
memory buffer to copy the incoming data via direct memory access
(DMA). Therefore, to handle incoming messages the application
needs to post such receive requests beforehand.

No one-sided. As mentioned earlier, because EFA and RDMA
over InfiniBand share the same low-level interface they have a
common intersection of primitives. However, there are important
distinctions between EFA and reliable RDMA over InfiniBand. Reli-
able connected RDMA provides two types of operations: One-sided
read/write/atomic primitives and two-sided primitives send/recv.
EFA does not support one-sided read/write/atomic primitives [41],
but is limited to two-sided primitives. This means when applications
heavily rely on one-sided operations, they have to be redesigned
when porting them to EFA.

Connection scalability. On the other hand, SRD offers better
scalability because a well-known limitation of reliable connected
(RC) RDMA is lifted. That is, in RC RDMA, one connection endpoint
can exclusively communicate only with one other end-point This
means to achieve an all-to-all communication many connections
need to be established. Having a large number of connections can
lead to performance degradation because the NIC cannot cache
all connections [19]. In contrast, in EFA one connection end-point
can communicate with all other end-points without creating an
endpoint for every connection. This reduces the number of required
connections in EFA drastically [41].

2.3 Libfabric: EFA’s Programming Interface
Even though ibverbs provides all available primitives, the recom-
mended interface for application developers is libfabric [37], which
provides a higher level interface on top of ibverbs as shown in Fig-
ure 1. Libfabric is a framework that provides a unified abstraction
for high-performance network devices [10]. In contrast to ibverbs,
libfabric offers higher level functionality and is somewhat easier
to use. It provides a standard set of APIs that are agnostic to the
underlying network protocol and hardware device.

Provider. In libfabric, hardware devices are termed as provider
which hook into the framework and implement optimized device-
specific functionality. EFA is essentially one such provider under
libfabric [13] (called fi_efa). This EFA provider is layered above
ibverbs and thus also provides control and data transfer operations.
Because the data operations eventually use ibverbs, they bypass
the kernel completely (see Figure 1) and interact with the send and
receive queues of the NIC. Those data operations include the actual
data transfer between communication end-points.

Endpoint types. Internally, endpoints use the primitives pro-
vided by ibverbs and may expose some higher- level functionality
to the application developer. There are two types of communication
end-points [12] exposed for EFA: An unreliable datagram (DGRAM)
endpoint, with a maximum datagram size equaling the maximum

Table 1: SRD compared to reliable connected RDMA and
traditional TCP/IP Sockets.

SRD (EFA) RC RDMA (IB) Sockets (TCP/IP)
Ethernet InfiniBand Ethernet
reliable reliable reliable
Messages Messages Stream
unordered ordered ordered
user-space user-space kernel-space
asynchronous asynchronous synchronous
no one-sided one-sided no one-sided

transmission unit (MTU) of the underlying layer. A reliable data-
gram (RDM) that exposes the proprietary SRD protocol and is thus
reliable, but unordered as we discussed in Section 2.1. In the RDM
endpoint, libfabric implements higher-level features such as mes-
sage segmentation in the software layer. As such RDM supports
data transfers that are larger than the MTU.

Endpoint capabilities. Both endpoint types support the na-
tive send/recv operations. If an endpoint supports those send/recv
operations it is called to support the FI_MSG capabilities in lib-
fabric. However, when looking at the documentation [12] of the
EFA provider one can see that the RDM endpoint supports vari-
ous other capability types. One such capability is FI_RMA, which
is an umbrella term for all remote memory operations including
one-sided read/write. One-sided operations can directly access the
remote memory without any involvement of the remote CPU (OS
by-pass). As discussed before, this does not mean that EFA natively
supports one-sided operation. Instead, libfabric emulates the behav-
ior of one-sided operations [9] in the software layer. This simplifies
porting applications from one network device that supports one-
sided operations to another device that does not support them.
However, since libfabric emulates the behavior of one-sided opera-
tions for EFA, the remote CPU is involved in data transfers; i.e., a
thread on the remote side emulates one-sided behavior. Moreover,
as most high-performance applications including DBMSs manage
their resources themselves, the emulated FI_RMA capability may
interfere. There is a possibility to change the default behavior [11]
(FI_PROGRESS_AUTO) and let the application threads handle the
progress (FI_PROGRESS_MANUAL), but doing so would mostly
require the application to mimic libfabric’s functionality.

2.4 Comparison to Reliable RDMA and Sockets
Table 1 summarizes the key differences between reliable EFA, reli-
able connected RDMA over InfiniBand, and traditional TCP/IP sock-
ets. As a consequence of their similar design objectives (low latency
and high bandwidth), we can observe that EFA and RDMA share
many common characteristics. Both are designed to use message-
based semantics. These message-based semantics help SRD to han-
dle out-of-order packets at the application level if needed. That
would be infeasible with a byte streaming protocol as used by
TCP/IP because message boundaries are opaque to the applica-
tion. RDMA’s unique feature is the native one-sided support. It
is important to note that there are other combinations that we
have not discussed or shown in the table. For instance, RDMA over
Converged Ethernet (RoCE) uses Ethernet as its fabric instead of
InfiniBand. However, those variations are outside of the scope of
this paper.

36.78 37.57 37.1 39.16
48.37

1.09 1.2 1.49 1.9 3.1

20.5 20.75 21.02 22.55
29.99

0

10

20

30

40

50

64 B 512 B 4 kB

message size

la
te

n
cy

 [
μ

s]

SRD (EFA) RC RDMA (IB) Sockets (TCP/IP)

Figure 2: Impact of message size on the average latency (half
round-trip-time) of the network fabrics SRD (EFA), RDMA
(IB), and Sockets (TCP/IP).

3 EVALUATION
In the following, we discuss the results of our extensive evalua-
tion which compares the performance of EFA with RDMA over
InfiniBand in a set of reproducible microbenchmarks.

Methodology. To isolate the fundamental properties of EFA and
RDMAover InfiniBandwe used thewell-known performancemicro-
benchmark library perftest (available at [14]). Perftest uses ibverbs
directly and supports EFA (SRD and UD) as well as reliable con-
nected RDMA over InfiniBand. This makes the experiments directly
comparable as both implementations use the same benchmarking
code. Since perftest only supports single-threaded experiments,
we additionally implemented a multi-threaded benchmark with
libfabric.

Setup. Because EFA is only available on AWS which does not
offer RDMA over InfiniBand we used two different hardware plat-
forms – both running Linux. We conducted the EFA experiments
using two EC2 c5n.18xlarge instances with 192 GB main memory
and 72 vCPUs connected via 100 Gigabit EFA. Both c5n.18xlarge
instances were deployed in the recommended cluster placement
group to achieve the best low-latency network performance [40].
We also replicated our experiments on c5n.metal and obtained simi-
lar results. The RDMA over InfiniBand experiments were conducted
on two bare-metal machines with 1 TB main memory and 56 CPUs
connected with an InfiniBand network using Mellanox ConnectX-5
MT27800 NICs (InfiniBand EDR 4x, 100 Gbps).

3.1 Latency Comparison
As latency is critical for many applications, we start our evaluation
by comparing the latency of SRD (EFA) with RC RDMA (IB). To clas-
sify the latency improvement of SRD (EFA) over EC2’s traditional
100 Gigabit networking solution we included sockets (TCP/IP) as
a reference. As mentioned, we use perftest [14] for EFA as well as
RDMA and sockperf [27] for sockets.

Figure 2 compares the effect of varying message sizes on the
average latency, i.e., half-round-trip latency. Both EFA and RDMA
provide lower latencies than sockets. However, when comparing
RDMA with SRD, we can observe that RDMA’s latency is around
20× lower for messages below 512 bytes. For 8 kBmessages RDMA’s
latency is still 10× lower than SRD’s latency. Thus, although the
latency results for EFA are considerably better than for the TCP/IP
sockets, there remains a substantial gap to RDMA (similar latencies
for RDMA are achievable on Azure VMs [28]).

0

10

20

30

8 B 64 B 512 B 4 kB

message size (log)

la
te

n
cy

 [
μ

s]

SRD (EFA) UD (EFA)

Figure 3: Average latency comparison between EFA’s trans-
port modes: SRD (EFA) and UD (EFA).

0.75

0.80

0.85

0.90

0.95

1.00

4 B 16 B 64 B 256 B

message size

re
la

tiv
e
 i
n
lin

e
 l
a
te

n
c
y SRD (EFA) RC RDMA (IB)

Figure 4: Relative impact of the inline optimization for small
messages on latency. Inline optimization is applicable for
messages <=32 B in SRD and messages <=220 B in RDMA.

3.2 EFA: SRD vs. UD
As the latency of SRD (EFA) is one order of magnitude higher com-
pared to RDMA,we next evaluate if Unreliable Datagram (UD) (EFA)
offers lower latencies. Figure 3 compares the effect of varying mes-
sage sizes on latency on both connection types. Important to note
is that SRD has an MTU of 8 kB while UD supports only 4 kB. From
Figure 3 we can see that SRD (EFA) consistently has a slightly higher
latency of around 1 𝜇s. These are minor differences – especially
when considering that SRD provides reliability in contrast to UD.
One argument made in the past to favor UD RDMA over RC RDMA
was its superior scalability [18, 19]. However, this does not translate
to EFA SRD as described in Section 2.2. Therefore, we think the
trade-off to sacrifice reliability to get a slight latency improvement
is often not worthwhile for EFA. Since many applications require
reliable delivery, and if not provided from the hardware as in SRD,
it needs to be handled by the software stack, which increases code
complexity and may equalize the latency improvement.

3.3 Inline Optimization
To improve the latencies of small messages a well-known opti-
mization in RDMA is to inline the payload in the message request.
Without inlining, the NIC performs an additional step to fetch the
payload of a message request using DMA over PCIe. When using
inlining, the CPU directly copies the payload inside the message
request and thus the NIC can avoid the additional step to fetch the
payload. Consequently, the message can be transmitted faster, and
thus latency decreases, as shown by Kalia et al. [18]. Essentially, in-
lining shifts work from the network card back to the CPU. Because
inlining can be applied to SRD for messages up to 32 bytes, we
investigate if this optimization is as beneficial as for RDMA (which
supports inlining for messages up to 220 bytes). Figure 4 shows the
relative latency improvement of inlining compared to a no inlining
baseline. Although the absolute latency improvement of inlining
is around 500 nanoseconds for both (EFA and RDMA), in relative

0.0

0.5

1.0

1.5

2.0

2.5

8 B 64 B 512 B 4 kB

message size

b
a
n
d
w

id
th

 [
G

B
/s

] SRD (EFA) RC RDMA (IB)

Figure 5: Impact of message size on the synchronous band-
width, i.e, before sending the next message we wait for the
completion of the previous message (single-threaded).

terms the effect is only substantial for RDMA due to EFA’s higher
base latencies.

3.4 Synchronous Bandwidth
We now turn our attention from latency to bandwidth. In Figure 5,
we examine the synchronous bandwidth of SRD (EFA) and RC
RDMA (IB) with varying message sizes using a single thread. In
this context, synchronous means that we wait for the completion of
the previous message before sending the next message. SRD and
RC RDMA both adhere to a delivery-complete semantics which
means that the completion is generated when the remote network
card receives the message. For this setup, we can see in Figure 5
that RDMA achieves a much higher bandwidth. The reason is that
RDMA’s latency is much smaller and thus when cross-referencing
the bandwidth results with the latency results from Figure 2 the
achieved bandwidth is not surprising. Therefore, the achievable
bandwidth of both (EFA and RDMA) is limited by their respective
latencies. For instance, with 8 kB RDMA achieves roughly 2.5 GB/s
which is 10 times more than SRD achieves in this setup (similar to
the latency gap).

3.5 Asynchronous Bandwidth and Message Rate
As shown above, latency becomes the limiting factor in synchro-
nous networking. Subsequently, we investigate how asynchronous
networking avoids this limitation. Therefore, we vary the number
of outstanding messages (i.e, the transmission depth) and show in
Figure 6 how the bandwidth and message rate are affected.

First, let us focus on larger messages. With 4 kB messages and
a transmission depth of about 64, RDMA achieves the maximum
bandwidth (i.e., around 12GB/s). In contrast, EFA does not fully
saturate the bandwidth and instead seems to be message bound at
around 2M messages, i.e., the same message rate as with smaller
message sizes. When messages are sufficiently large, i.e., 8 kB and
larger, both EFA and RDMA achieve the maximum bandwidth.
However, Figure 6 shows that only RDMA is able to reach the full
bandwidth when the transmission depth is small. The reason for
that lies in RDMA’s lower latency since it enables RDMA to process
outstanding messages more quickly. For instance, a transmission
depth of 8means that we always try to have 8messages outstanding.
As RDMA’s latency is lower, the completion for these 8 outstanding
messages is generated faster and new messages can be transmitted.
Conversely, because EFA’s latency is higher the completion takes
longer and thus requires a higher transmission depth to achieve
the maximum bandwidth.

16 B 512 B 4 KB 8 KB

16 B 512 B 4 KB 8 KB

8 128 2k 8 128 2k 8 128 2k 8 128 2k
0

3

6

9

12

8 128 2k 8 128 2k 8 128 2k 8 128 2k
0

2M

4M

6M

transmit depth [log]

b
a

n
d

w
id

th
 [

G
B

/s
]

m
s
g
.
ra

te
 [
m

sg
/s

]

SRD (EFA) RC RDMA (IB)

Figure 6: Effect of transmission depth (number outstanding
messages) on asynchronous bandwidth (upper) and message
rate (lower) for selected message sizes (single-threaded).

We nowmove on to smaller messages, i.e., 16 and 512 byte. When
comparing the respective message rates for both 16 and 512 byte,
we can observe that the message size does not affect the maximum
message rate. RDMA achieves around 7Mmessages per second and
EFA around 2 M messages per second for both message sizes. One
may now wonder what the limiting factor for EFA’s message rate is.
What we can already rule out is being latency-bound because we
send multiple messages asynchronously. Additionally, we are not
bandwidth bound either for 16 and 512 byte messages as we can
clearly observe from Figure 6. Hence, we argue that themessage rate
is limited by the network card, as discussed in the next experiment.

3.6 NIC Parallelism
In this experiment, we examine if the processing unit (PU) of the
network card became the limiting factor in the previous experiment.
This can happen if a powerful CPU core overwhelms a less powerful
PU on the NIC. Often a single connection is handled by a single
NIC PU [18]. Consequently, increasing the number of connections
may lead to the utilization of multiple NIC PUs, which ultimately
improves the message rates.

To evaluate if NIC parallelism can be exploited we use a single
thread and increase the number of connections. Figure 7 shows that
a single CPU core utilizes multiple connections with SRD and thus
achieves a peak message rate of around 4M with 4 connections (16
and 512 byte messages). With 4 kB message size, EFA eventually
reaches the full bandwidth with 2 connections (same message rate
as RDMA which achieves full bandwidth). In contrast, RDMA does
not profit from having multiple connections, instead, performance
degrades slightly for smaller messages.We can conclude that RDMA
is CPU-bound with small messages. We confirmed this statement
by using a single connection and posting a linked list of multiple
messages to the NIC, i.e., in perftest this is done by setting the post
list parameter to 16. This allows the NIC to process the requests
at full speed without being dependent on the CPU. For RDMA
the message rate with 64 byte messages peaked at around 17 M
messages per second whereas EFA’s messages per second remained
at 2 M due to the processing limit of a single NIC PU.

16 B 512 B 4 KB 8 KB

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
0

2M

4M

6M

8M

number connections (send queues)

m
sg

.
ra

te
 [
m

sg
/s

]

SRD (EFA) RC RDMA (IB)

Figure 7: Effect of increasing number of connections (send
queues) on message rate to exploit NIC parallelism (single-
threaded, transmission depth is 256).

Based on these results, we can reasonably speculate that a single
Nitro Card PU can achieve around 2 M messages per second. To
achieve the maximum of 4M messages per second multiple Nitro
Card PUs need to be exploited. However, it is not clear if a single
thread can saturate all available Nitro Card PUs thus in the next
experiment we will investigate if multiple threads achieve a higher
peak message rate.

3.7 Multi-Threading
After the single-threaded experiments, we move on to showing the
multi-threaded performance. Multi-threading helps us to resolve
the previously discovered limitations in a single-threaded setup.

For this experiment, we do not use the perftest benchmark suite
since it does not support multi-threading. Therefore, we imple-
mented our own benchmark with libfabric which is also the reason
that the single-threaded numbers in Figure 8 do not match the pre-
vious experiments. Libfabric has substantial CPU overhead as we
will show in the next experiment. However, this overhead is com-
pensated for in this experiment by using multiple CPU resources.

Figure 8 shows how increasing the number of CPU threads affects
both bandwidth (upper) and message rate (lower). For 4 kB message
size, EFA and RDMA reach the full bandwidth. Whereas RDMA
reaches the bandwidth limit already with 2 threads, EFA requires 4
threads. The message rate with 64 byte messages for EFA is capped
at around 8M. When considering the results from Figure 7 where
we deduced that a single NIC PU reaches 2 M messages per second
we can speculate that the NIC may have 4 PUs in total. On the other
hand, the RDMA network card achieves more than 30 M messages
per second.

3.8 EFA Interface Evaluation
We now compare the performance of libfabric with the lower-level
ibverbs interface. We examine the bandwidth as well as the mes-
sage rate in Figure 9. To verify that our libfabric implementation
performs as expected, we compared it to the OSU MPI performance
test, which uses libfabric as well. Figure 9 shows that using the
lower-level library ibverbs yields the best performance, i.e., around
50% more messages per second. Conversely, one may argue that
when using multiple threads, we may hit the limits of the EFA NIC
anyways and libfabric’s better usability may be worth it. However,
we found that the library had many performance knobs and thus
was not easier to use than ibverbs at all.

64 B 4 KB

64 B 4 KB

2 8 32 2 8 32
0

4

8

12

2 8 32 2 8 32
0

10M

20M

30M

number threads

b
a
n
d
w

id
th

 [
G

B
/s

]
m

sg
.
ra

te
 [
m

s
g
/s

]

SRD (EFA) RC RDMA (IB)

Figure 8: Impact of increasing number of threads on band-
width (upper) and message rate (lower) for 64 B and 4 kB
messages (transmission depth is 256).

0

3

6

9

0.0 M

0.5 M

1.0 M

1.5 M

2.0 M

8 B 64 B 512 B 4 kB

8 B 64 B 512 B 4 kB

message size

b
a
n
d
w

id
th

 [
G

B
/s

]
m

s
g
.
ra

te
 [
m

sg
/s

]

Libfabric OSU MPI (Libfabric) perftest (ibverbs)

Figure 9: Performance implication of the selected EFA inter-
face (ibverbs or libfabric) on bandwidth (upper) and message
rate (lower) for message size up to 8 kB (single-threaded,
transmission depth is 256).

4 RELATEDWORK
We think that the broad availability of EFA has the potential to
trigger a redesign of distributed databases. Unfortunately, there has
only been very limited work on EFA in general.

Most researchwas driven by theHPC community and specifically
geared towards MPI as it is the de-facto standard in distributed HPC
applications [4, 41, 47]. Most notably is the paper from Shalev et al.
(Amazon) [41] which discusses some of the design decisions behind
the proprietary SRD protocol. The other two papers [4, 41, 47]
specifically focus on MPI primitives and on how different MPI
implementations perform with EFA.

There are some papers in the machine learning community
which use EFA for distributed training [43, 52]. However, they
focus on the machine learning part and use EFA transparently.
The only database paper which mentions EFA is from Barthels et
al. [2] in which they show in one experiment that their findings are
transferable to the off-the-shelf network infrastructure of AWS.

5 LESSONS LEARNED AND SUMMARY
Although both EFA and RDMA over InfiniBand are advertised for a
similar audience, their performance characteristics are quite differ-
ent. This has major implications on how distributed data processing
systems for the cloud should be designed and optimized. In the fol-
lowing, we summarize our main findings and their implications on
system design:

Latency. As we have seen in Figure 2, EFA’s latency decreased
twofold compared to traditional TCP/IP sockets. Nonetheless, the
latencies of EFA are still an order of magnitude higher than those of
RDMA.⇒⇒ Due to EFA’s higher latency it is not as beneficial to send
small messages as in RDMA. Therefore, RDMA techniques which
aim at decreasing the message size, such as message shrinking [18]
and inline optimization, are not as effective in EFA. Rather, to amor-
tize the high latency techniques such as batching or piggybacking
should be considered for system design.

Bandwidth. As shown in Figure 6, the bandwidth of EFA is
strongly dependent on the transmission depth and the message
size.⇒⇒ To saturate the bandwidth, a large transmission depth (e.g.,
256) and message sizes are important. When the message size is
below 8 kB, NIC-parallelism should be exploited by either using
multiple connections for a single-threaded application or multiple
threads. With even larger messages (e.g., 8 kB) those sophisticated
optimizations are not necessary to achieve the full bandwidth.

Message Rate. Figure 6 shows that the achievable message rate
for small messages in EFA is considerably smaller than in RDMA.
⇒⇒ NIC parallelism is crucial to utilize the maximum message rate,
preferable with multiple threads to achieve 8 M messages/second.

No one-sided operations. Besides performance characteris-
tics, other factors such as the functionality of the interface play an
important role. For example, one-sided operations, the key primi-
tives for many state-of-the-art distributed RDMA systems, are not
natively available in EFA. ⇒⇒ System designs based on one-sided
primitives might need to be revisited.

Out-of-order-delivery. In contrast to reliable connected RDMA,
EFA does not guarantee in-order delivery.⇒⇒ Systems which rely
on ordering need to handle re-ordering in the software stack which
may induce some overhead.

Ibverbs vs. libfabric. The available EFA interfaces offer dif-
ferent characteristics. ⇒⇒ We argue that for database systems the
low-level ibverbs is likely better suited. Ibverbs yields better per-
formance and some higher-level functions of libfabric may impact
the database system. For instance, the emulation of one-sided verbs
might interfere with the thread scheduler of the database system.

EFA is proprietary. Unlike InfiniBand, it is not yet possible
to equip on-premise machines with EFA. ⇒⇒ Therefore, EFA can
exclusively be used in AWS ec2 instances (vendor lock-in).

Conclusion. Overall, even though EFA does not yet come close
to the latency of RDMA , we believe that it comes with potential for
distributed database systems. This is because EFA is already widely
available in AWS today [39] which comes with a wide offering of
available compute instances. Compared to TCP/IP, which was the
only available networking option in AWS before, EFA considerably
reduces the latency. Finally, we believe that some of the current
limitations of EFA, such as its low message rate, may be resolved
by future Nitro Cards generations.

REFERENCES
[1] Gustavo Alonso, Carsten Binnig, Ippokratis Pandis, Kenneth Salem, Jan

Skrzypczak, Ryan Stutsman, Lasse Thostrup, Tianzheng Wang, Zeke Wang, and
Tobias Ziegler. 2019. DPI: The Data Processing Interface for Modern Networks.
In CIDR.

[2] Claude Barthels, Ingo Müller, Konstantin Taranov, Gustavo Alonso, and Torsten
Hoefler. 2019. Strong consistency is not hard to get: Two-Phase Locking and
Two-Phase Commit on Thousands of Cores. PVLDB 12, 13 (2019).

[3] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.
2016. The End of Slow Networks: It’s Time for a Redesign. PVLDB 9, 7 (2016).

[4] Sourav Chakraborty, Shulei Xu, Hari Subramoni, and Dhabaleswar K. Panda.
2019. Designing Scalable and High-Performance MPI Libraries on Amazon Elastic
Fabric Adapter. In 2019 IEEE Symposium on High-Performance Interconnects, HOTI
2019,. IEEE.

[5] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
2014. FaRM: Fast Remote Memory. In NSDI.

[6] Aleksandar Dragojevic, Dushyanth Narayanan, Edmund B. Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No compro-
mises: distributed transactions with consistency, availability, and performance.
In SOSP.

[7] Philipp Fent, Alexander van Renen, Andreas Kipf, Viktor Leis, Thomas Neumann,
and Alfons Kemper. 2020. Low-Latency Communication for Fast DBMS Using
RDMA and Shared Memory. In ICDE.

[8] Philip Werner Frey and Gustavo Alonso. 2009. Minimizing the Hidden Cost of
RDMA. In ICDCS.

[9] OpenFabrics InterfacesWorking Group. 2021. EFA RDMCommunication Protocol
version 4. https://github.com/ofiwg/libfabric/blob/main/prov/efa/docs/efa_rdm_
protocol_v4.md

[10] OpenFabrics Interfaces Working Group. 2022. Libfabric. https://ofiwg.github.io/
libfabric/

[11] OpenFabrics Interfaces Working Group. 2022. Libfabric Programmer Manual:
fi_domain. https://ofiwg.github.io/libfabric/v1.1.1/man/fi_domain.3.html

[12] OpenFabrics Interfaces Working Group. 2022. Libfabric Programmer Manual:
fi_efa. https://ofiwg.github.io/libfabric/v1.14.0/man/fi_efa.7.html

[13] OpenFabrics Interfaces Working Group. 2022. Libfabric Provider. https://ofiwg.
github.io/libfabric/master/man/fi_provider.7.html

[14] OpenFabrics Interfaces Working Group. 2022. Perftest. https://github.com/linux-
rdma/perftest

[15] Eunyoung Jeong, ShinaeWoo, Muhammad Asim Jamshed, Haewon Jeong, Sungh-
wan Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a Highly Scalable
User-level TCP Stack for Multicore Systems. In NSDI.

[16] Chengfan Jia, Junnan Liu, Xu Jin, Han Lin, Hong An, Wenting Han, Zheng Wu,
and Mengxian Chi. 2018. Improving the Performance of Distributed TensorFlow
with RDMA. Int. J. Parallel Program. 46, 4 (2018).

[17] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA
efficiently for key-value services. In SIGCOMM.

[18] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guidelines
for High Performance RDMA Systems. login Usenix Mag. 41, 3 (2016).

[19] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST: Fast, Scalable
and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs.
In OSDI.

[20] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2019. Datacenter RPCs
can be General and Fast. In NSDI.

[21] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. 2014.
MICA: A Holistic Approach to Fast In-Memory Key-Value Storage. In NSDI.

[22] Feilong Liu, Claude Barthels, Spyros Blanas, Hideaki Kimura, and Garret Swart.
2020. Beyond MPI: New Communication Interfaces for Database Systems and
Data-Intensive Applications. SIGMOD Rec. (2020).

[23] Feilong Liu, Lingyan Yin, and Spyros Blanas. 2017. Design and Evaluation of an
RDMA-aware Data Shuffling Operator for Parallel Database Systems. In EuroSys.

[24] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete Wyckoff, and Dhabaleswar K.
Panda. 2003. High performance RDMA-based MPI implementation over Infini-
Band. In ICS.

[25] Simon Loesing, Markus Pilman, Thomas Etter, and Donald Kossmann. 2015. On
the Design and Scalability of Distributed Shared-Data Databases. In SIGMOD.

[26] Xiaoyi Lu, Dipti Shankar, Shashank Gugnani, and Dhabaleswar K. Panda. 2016.
High-performance design of apache spark with RDMA and its benefits on various
workloads. In Big Data.

[27] Mellanox. 2022. Sockperf. https://github.com/Mellanox/sockperf
[28] Microsoft. 2021. HC-series virtual machine sizes. https://docs.microsoft.com/en-

us/azure/virtual-machines/workloads/hpc/hc-series-performance
[29] Microsoft. 2022. High performance computing VM sizes. https://docs.microsoft.

com/en-us/azure/virtual-machines/sizes-hpc
[30] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-Sided RDMA

Reads to Build a Fast, CPU-Efficient Key-Value Store. In USENIX ATC.
[31] Christopher Mitchell, Kate Montgomery, Lamont Nelson, Siddhartha Sen, and

Jinyang Li. 2016. Balancing CPU and Network in the Cell Distributed B-Tree
Store. In USENIX ATC.

[32] Xiangyong Ouyang, Sonya Marcarelli, Raghunath Rajachandrasekar, and Dha-
baleswar K. Panda. 2010. RDMA-Based Job Migration Framework for MPI over
InfiniBand. In CLUSTER.

[33] DPDK Project. 2022. DPDK. https://www.dpdk.org/
[34] Mohammad J. Rashti and Ahmad Afsahi. 2008. Improving Communication

Progress and Overlap in MPI Rendezvous Protocol over RDMA-enabled Inter-
connects. In HPCS.

[35] Wolf Rödiger, Tobias Mühlbauer, Alfons Kemper, and Thomas Neumann. 2015.
High-Speed Query Processing over High-Speed Networks. PVLDB 9, 4 (2015).

[36] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. CoRR (2018).

[37] Amazon Web Services. 2019. Elastic Fabric Adapter is officially integrated into
Libfabric Library. https://aws.amazon.com/about-aws/whats-new/2019/07/
elastic-fabric-adapter-officially-integrated-into-libfabric-library/

[38] Amazon Web Services. 2021. AWS Nitro System. https://aws.amazon.com/ec2/
nitro/

[39] Amazon Web Services. 2021. EFA is now mainstream, and that’s a Good Thing.
https://aws.amazon.com/blogs/hpc/efa-is-now-mainstream/

[40] Amazon Web Services. 2022. Placement Groups. https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/placement-groups.html

[41] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sabbag. 2020. A Cloud-
Optimized Transport Protocol for Elastic and Scalable HPC. IEEE Micro 40,
6 (2020).

[42] Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chatzopoulos,
Aleksandar Dragojevic, Dushyanth Narayanan, and Miguel Castro. 2019. Fast
General Distributed Transactions with Opacity. In SIGMOD.

[43] Indu Thangakrishnan, Derya Cavdar, Can Karakus, Piyush Ghai, Yauheni Seliv-
onchyk, and Cory Pruce. 2020. Herring: rethinking the parameter server at scale
for the cloud. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2020, Virtual Event / Atlanta,
Georgia, USA, November 9-19, 2020.

[44] Lasse Thostrup, Jan Skrzypczak, Matthias Jasny, Tobias Ziegler, and Carsten
Binnig. 2021. DFI: The Data Flow Interface for High-Speed Networks. In SIGMOD.

[45] Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2017. Query Fresh: Log
Shipping on Steroids. PVLDB 11 (2017).

[46] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast
in-memory transaction processing using RDMA and HTM. In SOSP.

[47] Shulei Xu, Seyedeh Mahdieh Ghazimirsaeed, Jahanzeb Maqbool Hashmi, Hari
Subramoni, and Dhabaleswar K. Panda. 2020. MPI Meets Cloud: Case Study with
Amazon EC2 and Microsoft Azure. In Fourth IEEE/ACM Annual Workshop on
Emerging Parallel and Distributed Runtime Systems and Middleware, IPDRM@SC
2020. IEEE.

[48] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu, Lintao Zhang, and Lidong
Zhou. 2019. Fast Distributed Deep Learning over RDMA. In EuroSys.

[49] Erfan Zamanian, Carsten Binnig, Tim Kraska, and Tim Harris. 2016. The End of
a Myth: Distributed Transactions Can Scale. CoRR abs/1607.00655 (2016).

[50] Erfan Zamanian, Julian Shun, Carsten Binnig, and Tim Kraska. 2021. Chiller:
Contention-centric Transaction Execution and Data Partitioning for Modern
Networks. SIGMOD Rec. 50, 1 (2021).

[51] Steffen Zeuch, Sebastian Breß, Tilmann Rabl, Bonaventura Del Monte, Jeyhun
Karimov, Clemens Lutz, Manuel Renz, Jonas Traub, and Volker Markl. 2019.
Analyzing Efficient Stream Processing on Modern Hardware. PVLDB 12 (2019).

[52] Shuai Zheng, Haibin Lin, Sheng Zha, and Mu Li. 2020. Accelerated Large Batch
Optimization of BERBT Pretraining in 54 minutes. CoRR abs/2006.13484 (2020).
https://arxiv.org/abs/2006.13484

[53] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo Fonseca, and
Tim Kraska. 2019. Designing Distributed Tree-based Index Structures for Fast
RDMA-capable Networks. In SIGMOD.

https://github.com/ofiwg/libfabric/blob/main/prov/efa/docs/efa_rdm_protocol_v4.md
https://github.com/ofiwg/libfabric/blob/main/prov/efa/docs/efa_rdm_protocol_v4.md
https://ofiwg.github.io/libfabric/
https://ofiwg.github.io/libfabric/
https://ofiwg.github.io/libfabric/v1.1.1/man/fi_domain.3.html
https://ofiwg.github.io/libfabric/v1.14.0/man/fi_efa.7.html
https://ofiwg.github.io/libfabric/master/man/fi_provider.7.html
https://ofiwg.github.io/libfabric/master/man/fi_provider.7.html
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://github.com/Mellanox/sockperf
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/hpc/hc-series-performance
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/hpc/hc-series-performance
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-hpc
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-hpc
https://www.dpdk.org/
https://aws.amazon.com/about-aws/whats-new/2019/07/elastic-fabric-adapter-officially-integrated-into-libfabric-library/
https://aws.amazon.com/about-aws/whats-new/2019/07/elastic-fabric-adapter-officially-integrated-into-libfabric-library/
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/blogs/hpc/efa-is-now-mainstream/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://arxiv.org/abs/2006.13484

	Abstract
	1 Introduction
	2 Elastic Fabric Adapter
	2.1 SRD: A Reliable and Unordered Protocol
	2.2 Ibverbs: Low Level Interface
	2.3 Libfabric: EFA's Programming Interface
	2.4 Comparison to Reliable RDMA and Sockets

	3 Evaluation
	3.1 Latency Comparison
	3.2 EFA: SRD vs. UD
	3.3 Inline Optimization
	3.4 Synchronous Bandwidth
	3.5 Asynchronous Bandwidth and Message Rate
	3.6 NIC Parallelism
	3.7 Multi-Threading
	3.8 EFA Interface Evaluation

	4 Related Work
	5 Lessons Learned and Summary
	References

