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ABSTRACT
In this paper we present a new approach for distributed DBMSs
called P4DB, that uses a programmable switch to accelerate OLTP
workloads. The main idea of P4DB is that it implements a transac-
tion processing engine on top of a P4-programmable switch. The
switch can thus act as an accelerator in the network, especially
when it is used to store and process hot (contended) tuples on the
switch. In our experiments, we show that P4DB hence provides
significant benefits compared to traditional DBMS architectures
and can achieve a speedup of up to 8×.

CCS CONCEPTS
• Information systems→ Distributed database transactions;
• Networks→ In-network processing.
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1 INTRODUCTION
Motivation. The efficient use of data center networks plays a

significant role on the performance of distributed DBMSs. Tradi-
tionally, distributed DBMSs were built on the assumption that the
network is a major bottleneck. As such, classical distributed DBMSs
were designed to mitigate the effects of the high network cost using
sophisticated techniques such as complicated partitioning schemes
[15, 48, 52, 70], semi-join transformations [47, 50, 53], speculative
execution [49], new consistency levels [35], or even the relaxation
of atomicity guarantees [37, 40]. However, data center networks
have been evolving significantly in recent years.

A first major trend that we have seen in the last years is that
data center networks have evolved from being slow to being fast.
For example, when looking at the network speed provided by cloud
vendors such as Amazon, Microsoft or Google for their hosted
cloud instances, we see that even for the smaller (i.e., cost-efficient)
instances, the network link has a speed of at least 10Gbps and can
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Figure 1: OLTP processing in P4DB using a programmable
switch. Compared to a traditional DBMS without using the
switch, P4DB provides significant speedups. Details about
the setup are explained in our evaluation.

reach up to 100Gbps for larger instance types. Consequently, there
are significant efforts in database community into investigating how
these high-speed networks can be used efficiently by redesigning
distributed DBMSs for zero-copy protocols such as RDMA or DPDK
to avoid the overhead of classical network stacks such as TCP/IP
[7, 30, 64, 69, 72, 74].

Another major trend that we have seen in the recent years is
that with the rise of software-defined networks [36], switches and
network cards have become programmable [10, 51] and thus turned
networks from being passive to being active. This programmability
of the network opens up many additional opportunities to tailor the
network to the applications on top. In particular, the programma-
bility of the so-called data plane allows applications to offload
computation to the network devices (aka in-network-processing
or INP for short). INP has shown to provide significant benefits for
distributed data processing in general, including key-value stores
[28, 41, 68] as well as distributed OLAP and ML [8, 39, 42, 57, 61].
However, as far as OLTP is concerned, there has been only limited
work so far which offloads only certain sub-components of OLTP,
such as lock management [68] or replication protocols [28, 73].

Contributions. As a main contribution, in this paper we present a
new, more aggressive approach for distributed DBMSs called P4DB
that involves a programmable switch more actively to accelerate
OLTP workloads. The main idea of P4DB is that it implements a
full transaction processing engine on top of a programmable switch,
using P4 as the de facto data plane programming language. That
way, P4DB exposes the switch as an “additional” database node
that, however, comes with very different properties compared to a
normal database node (as we discuss below). As a result, the switch
is an ideal “place” to store and process hot (contended) tuples that
typically lead to a significant performance degradation in traditional
DBMSs. As we show in Figure 1, P4DB can thus significantly speed
up OLTP processing in distributed DBMSs for various workloads
in case hot tuples are offloaded to the switch.

To better understand where the benefits of using a switch origi-
nate from, let us first look at the hardware characteristics of (pro-
grammable) switches that make them an interesting candidate for
hot tuples. As a main difference to a normal database node of the
host DBMS, a programmable switch comes with two interesting
characteristics: (1) Programmable switches are designed to process
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the aggregated load of network traffic from all connected servers at
line-rate. (2) The switch can be reached from database nodes that
are directly connected to the switch with only half of the network
latency compared to the latency required to reach any other (re-
mote) database node that is connected to the same switch. Based
on these characteristics, we next argue that a programmable switch
is an ideal place for storing and processing hot items of an OLTP
workload that are most frequently accessed by transactions.

In a traditional distributed DBMS architecture, hot items that
are accessed frequently by transactions typically lead to a severely
degraded performance, as mentioned before. This is especially true,
when hot items are involved in distributed transactions, as hot items
typically suffer from increased remote access latencies. The latency
increase, in turn, leads to an increased likelihood of contention on
those items and thus higher abort rates [71]. In contrast, P4DB can
mitigate these effects if hot items are stored and processed on a
programmable switch: This is because when hot tuples are involved
in distributed transactions, storing them on a switch reduces access
latencies, which reduces the overall contention, directly leading to
performance benefits.

Surprisingly, however, as we show in our evaluation, even if an
OLTP workload is perfectly partitionable and no distributed trans-
actions are involved in a workload, or even if there is only limited
skew in a workload, P4DB can still speed up processing compared
to a traditional DBMS. The reason is that programmable switches
provide an execution model that enables a new lock-free execution
scheme for transactions, which allows the switch in P4DB to pro-
cess transactions on hot tuples at high speeds since it avoids any
contention. However, implementing a transaction engine on top of
a programmable switch does not come “for free” and many chal-
lenges need to be addressed. For example, typical programmable
switches of today, such as recent Tofino-based switches [5], have
restrictions not only on the memory model (i.e., how data in the
switch memory can be accessed by in-switch-programs), but also
what kinds of in-switch-programs are supported by their execution
models. By making clever use of the switch memory and the execu-
tion models of programmable switches though, we can efficiently
support the concurrent execution of transactions in an abort-free
manner on the switch, as mentioned before.

Finally, we think P4DB is deployable and compatible with ex-
isting datacenter networks. As a main deployment model, P4DB
targets cloud providers that have dedicated racks for database ser-
vices, which is a common scheme to provide high performance for
distributed DBMSs [68]. For such a deployment, P4DB only needs
to augment the Top-of-Rack (ToR) switches with a custom data
plane module for processing transactions on hot tuples. But other
deployments, e.g. hierarchies of switches or multi-tenant deploy-
ments, are clearly also interesting. While such deployments are out
of the scope of this paper and are important avenues of future work,
at the end of the paper we provide a short discussion of how we
think P4DB can generalize to such deployments.

Outline. The remainder of this paper is organized as follows:
First, in Section 2 we discuss the relevant background on pro-
grammable switches and their memory and execution models. In
Section 3 we provide an overview of P4DB before we then explain
in Section 4 and Section 5 the details of the storage and execu-
tion model we implemented to execute database transactions on
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Figure 2: The Protocol Independent Switch Architecture
(PISA): All stages (Parser, MAU Stages and Deparser) are pro-
grammable and allow flexible packet processing in the data
plane based on packet headers and metadata.
a programmable switch. Afterwards, in Section 6 we then discuss
the integration of the in-switch transaction processing into a host
DBMS. Finally, we conclude with an extensive evaluation of P4DB
in Section 7 using various OLTP benchmarks as well as an overview
of related work in Section 8 and a summary in Section 9.

2 BACKGROUND
In the following, we discuss the relevant background on the typical
programmable switches that are commercially available today.
2.1 Programmable Switches
Programmable switches are an emerging trend on the market with
specialized ASICs from vendors such as Intel [24] or Cavium [12].
Compared to traditional switches, programmable switches provide
capabilities for flexible packet processing at line-rate of up to billion
pkt/s. In-network processing (INP) enables advancements in the
programmability of the data plane by providing a reconfigurable
architecture [10] based on match-action tables. This increases the
flexibility of switches to be used not only for data routing but also
for offloading application logic to the switches by implementing
customer match-action rules.

The de facto standard for programming the data plane [9] is
P4 (Programming Protocol-Independent Packet Processors) . P4 is
a high-level language that allows to write match-action rules to
express the processing of packets in the data plane [9]. Initially
designed for programmable network switches, P4 is now used in
a variety of systems which can also be used to process packets
including SmartNICs or FPGAs [6, 38, 63].

P4 programs in general operate on packet headers and specify
how to rewrite those headers. Although it uses a C-like syntax, it
does not allow the use of pointers and has many other restrictions
regarding floating-point numbers or loops to allow the processing
of P4 programs at line-rate. These constraints can be overcome
by common techniques like loop-unrolling, fixed-point arithmetic
or dictionary encoding for strings. Switch vendors can also add
different dedicated hardware-accelerators (e.g.: a checksum-engine
or FPU) to the ASIC, which are then available through P4-externs.

2.2 Protocol Independent Switch Architecture
For executing P4 programs, the commercially available program-
mable switches typically implement the so-called Protocol Inde-
pendent Switch Architecture (PISA) as shown in Figure 2. PISA
provides protocol-independence by allowing programmers to spec-
ify how a packet should be parsed and processed in a declarative
manner using match-action tables as mentioned before. In P4DB,
for example, we use custom match-action rules to implement the
logic of the transaction engine on the switch.



To process such application-specific match-action rules, PISA-
based switches apply the following procedure: First, the header
of a network packet is parsed in the ingress stage. These packet
headers can include typical network information that is used for
routing the packet along with metadata that can trigger more
application-specific match-action rules that are executed in so-
called match-action-units (MAUs) of PISA-based switches. In a
PISA-based switch, multiple of these MAUs are typically linked
together to process network packets in a pipeline-parallel man-
ner with one packet per MAU stage. An important aspect is that
match-action rules, if they depend on each other, must be placed in
successive MAU stages. At the end of a switch pipeline, a packet is
deparsed and sent over the network to its recipient.

2.3 Tofino Native Architecture
In this paper, we use a Tofino-based switch which is one of the
commercially most successful programmable switches today. Based
architecturally on PISA, it provides several extensions as part of
the so-called Tofino Native Architecture (TNA) and programmable
fixed-function components. For example, switch ports can be con-
figured as loopback ports to cycle the same packet multiple times
through the switch. This can be used to implement loops and thus
execute data plane programs that can not be executed in a single
pipeline pass. Stateful operations are also an interesting extension
available in TNA [11, 32]. While these features are Tofino-specific,
similar functions are provided by other vendors as well.

The ability of executing stateful operations in switches is a cru-
cial part in P4DB, since it allows us to do transaction processing in
a switch. The idea of these stateful operations in general is that they
allow match-action rules to access state in SRAM through so-called
register arrays. However, the total amount of memory, in today’s
switches is limited to a fewmegabytes only.While this seems to be a
quite limiting factor, such an amount of memory is already enough
to hold data for a few thousands of hot tuples, which has proven
to be sufficient to significantly increase throughput of applications
utilizing programmable switches [28, 29, 41, 68]. For example, the
switch-programs of P4DB can store approximately 820K 8Byte hot
tuples per pipeline. Moreover, there already exist other switch im-
plementations based on FPGAs and high-bandwidth-memory that
further alleviate this limitation [22].

Besides the limited switch memory, there exist other constraints
on how data can be accessed from within P4 programs that are
important aspects we need to consider when designing P4DB. For
example, a first and important constraint, is that the register arrays
(i.e., the SRAM) are partitioned over MAU stages and thus can only
be accessed when the packet is processed by that stage. Moreover,
to ensure the processing of packets at line-rate, multiple accesses
(e.g., multiple read and write operations) from one packet to the
very same register are not allowed [68]. Finally, a last but important
limitation of stateful operations is that the order of register accesses
in a P4 program needs to follow the placement order over the MAU
stages in a pipeline (i.e., a data item stored in a register in an earlier
MAU stage must be accessed first in the P4 program).

3 SYSTEM OVERVIEW
In the following, we give an overview of P4DB. As shown in Figure 3,
in an offline preparation step (Figure 3, left-hand-side) hot tuples

are offloaded from database nodes to the switch. Once offloaded,
at runtime (Figure 3, right-hand-side) database nodes of the host
DBMS then trigger transactions on the switch.

3.1 Offloading Data
A key challenge when offloading hot tuples to a programmable
switch is to determine the data layout for the hot tuples on the
switch. Storing tuples in registers of PISA-like switches such as
the Tofino and supporting stateful operations on top comes with
several constraints as discussed before. More precisely, hot tuples
that should be stored on a switch have to be (1) assigned to registers
in the order of how they are being accessed by transactions, and
(2) a switch register that stores a tuple can only be accessed once
per transaction and pipeline pass. In case these constraints can be
satisfied by the data layout, transactions can be executed on the
switch in a single pass through the pipeline. In Section 4 we hence
present a new storage scheme for PISA-like switches called the
declustered storage model, that aims to find a data layout for a given
set of hot tuples and a set of transactions to maximize the number
of transactions that can be executed in a single pass. Otherwise,
if this is not the case, they require multiple passes through the
switch pipeline, which negatively impacts the overall performance
of executing switch transactions, as we discuss next.

In P4DB, we currently use a static approach to offload data; i.e.,
we decide based on access statistics of a representative workload
which tuples are hot and thus should be offloaded to the switch.
For the offline detection of hot tuples, we replay the transactions in
a workload statement-by-statement to identify frequently accessed
tuples. To identify those hot tuples at runtime, the partitioning
manager of P4DB, which resides on each database node, keeps an
index with the tuple identifiers (i.e., their primary keys) as well
as other metadata. More details how this index is used at runtime
and how secondary index lookups of hot tuples are supported is
discussed in Section 6. Clearly, one could also use a more dynamic
approach which monitors access frequencies at runtime to support
potential shifts in the workload. However, this is an orthogonal
aspect for future work.

3.2 Processing Transactions
Once hot tuples are offloaded to a switch and the data layout (i.e., a
mapping of tuples to registers) is defined, database transactions can
be executed on the switch. In the following, we assume the case that
database transactions can be partitioned into hot/cold transactions
that either involve only hot tuples (on the switch) or cold tuples
(on the host database nodes). Transactions that span over cold and
hot tuples (called warm transactions) will be discussed in Section 6.

Hot Transactions. Hot transactions can be fully executed as in-
switch transactions without coordinating with database nodes. The
transaction logic of hot transactions is implemented as P4-programs
in P4DB and deployed together with the data in the offloading step.
For executing a hot (in-switch) transaction at runtime, database
nodes of the host DBMS need to send a network message to the
switch. This message includes all relevant transaction parameters
such as transaction type that should be executed along with its
input parameters. Once a hot transaction is executed, the results
are sent back to the calling database node over the network.
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Figure 3: P4DB accelerates distributed OLTP by exposing
a programmable switch as an additional database node. To
make use of the switch, P4DB first offloads hot tuples to the
switch in an offline step. At runtime, transactions can then
be executed at line-rate on these hot items on the switch.

The novelty of P4DB lies in the fact how transactions are being
processed on the switch. The details this scheme will be discussed
in Section 5. In a nutshell, our scheme enables that hot transactions
(in most cases) can be executed using a single pass of the transaction
through a switch pipeline. An important aspect is that single-pass
transactions can be executed at line-rate and do not require any
coordination on the switch while still guaranteeing serializability.
In case transactions can not be executed in a single pass (which
can be the case for more complex transactions with many reads
and writes), P4DB falls back to a scheme for those transactions
that requires multiple circulations through the switch pipeline and
relies on coordination (as we discuss later). Hence, a goal of our
storage scheme that we discuss next is to lay out the data on the
switch to minimize the need for multi-pass transactions.

Cold Transactions. Different from hot transactions, cold transac-
tions are executed completely by database nodes of the host DBMS
without involving the switch. For processing transactions on cold
tuples, not stored on the switch, P4DB currently uses a standard
2PC protocol for distributed transactions (with different deadlock
detection modes) and a pessimistic lock based concurrency scheme
to coordinate execution on each node. However, it is important to
note that any other concurrency scheme could be used to execute
cold transactions in the host DBMS (cf. Section 6).

4 DECLUSTERED STORAGE MODEL
In this section, we present our new declustered storage model
for PISA-based switches like the Tofino switch. The goal of the
declustered storage model is to execute hot transactions in a single
pass through a switch pipeline.

4.1 Goals of Data Layout
In the following, we first provide a high-level overview of how hot
transactions are being executed in a switch. Afterwards, we derive
the design of the data layout to enable single-pass transactions
on the switch (i.e., which tuples are assigned to registers of the
different MAU stages in a switch).

As shown in Figure 4, in P4DB each network packet in a switch
pipeline represents a separate transaction. This assumption is rea-
sonable, since (1) switches can execute billion packets per second,
and (2) batching is often undesired in latency-critical OLTP. As a
result, in each MAU stage of a switch pipeline, there is only a single
transaction per cycle. Moreover, during processing, at each clock
cycle transactions move to the next (subsequent) stage in a pipeline
which is dictated by the switch execution model of PISA-based
switches.

Stage 0 Stage 1 Stage 2

Transaction ATransaction BTransaction C

Stage 3

Ordering through sequential accesses!

Transaction D

1 Pkt/Cycle ➜ 1 Txn/Cycle

Figure 4: Pipelined processing of switch transactions. Packets
represent transactions which advance in the pipeline once
per clock cycle. In each cycle, a transaction can only access a
single tuple of the current stage with one operation.

A first important implication that this execution model has on
the data layout is that we only have one transaction per MAU
stage with exclusive access to the registers of this MAU stage. This
simplifies concurrency control for transactions on the switch, as
we discuss next in Section 5. The first important constraint that
is dictated by the switch memory model though is that a transac-
tion can execute only one operation (read or write) to a register
index which holds a single tuple. A stage usually can hold a few
register arrays. Consequently, since transactions typically involve
read/write operations on multiple tuples, a goal of the switch data
layout is to allocate the tuples accessed by the same transaction
into distinct register arrays of MAU stages. If this is not possible,
a transaction needs to pass through the switch pipeline multiple
times to execute all its required (read/write) operations.

Second, as mentioned before in Section 2, the access order of
transactions has an influence on the assignment of tuples to regis-
ters of MAU stages. For example, if in Figure 4 Transaction B reads
a tuple 𝐴 and writes a tuple 𝐵 using 𝐵 = 𝐵 + 𝐴, then 𝐴 has to be
located in a MAU stage before tuple 𝐵. Consequently, another goal
of the switch data layout is to align the tuples stored in the register
arrays of MAU stages with the access order imposed by transac-
tions. Again, if it is not possible to reflect the order of accesses
by a transaction in the data layout, a hot transaction needs to be
executed using multiple passes through the switch pipeline.

Finally, there are hot transactions which always require multiple
passes independent of the data layout (i.e., a single-pass execution
is not possible at all). This is the case, when a transaction needs
to execute multiple operations on the same tuple (e.g., a read and
later a write of the same tuple), since only one operation per stage
to the same tuple is allowed by the memory order of the switch.
However, transactions that require multiple accesses to the same
tuple are rather an exceptional case, as we see in our evaluation.
Furthermore, as we will see in our experiments, P4DB can then
still achieve significant benefits if such a case occurs compared to a
traditional DBMS architecture without a switch.

4.2 Data Layout Problem
The goal of the declustered storage model is (as discussed before)
to enable that hot transactions can be executed in a single pass by
assigning tuples to switch registers that is optimal for the switch
workload. More precisely, given a set of hot tuples and a set of
hot transactions that should be executed on the switch, the goal
of the declustered data layout is to maximize the number of hot
transactions in the workload that can be executed in a single pass.
Interestingly, this problem is related to declustered data access for
disk-based databases that aims to spread data access over different
disks [43–45].
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The problem of declustering data accesses is typically formalized
as a graph problem. The general idea is to represent all tuples for
which we aim to define a declustered data layout as nodes in the
graph. If two tuples, represented by nodes U and V, are accessed
together by one transaction, a new edge e(U,V) is added to the graph
with a corresponding weight that describes their relative access
frequency. In P4DB, we extend this model by using directed edges
instead of edges without direction in order to model dependent
operations that impose an order of access and thus an order of
how to assign tuples to registers. More precisely, if an ordering
dependency of operations (e.g., a read-write dependency) between
two tuples represented by nodes U and V exist in one transaction,
the edge is directed from U to V. If no such dependency exists, then
a bidirectional edge is used between U and V to indicate that the
tuples have no dependencies in the access order.

4.3 Data Layout Algorithm
The data layout algorithm of P4DB uses this graph to assign hot
tuples to registers of different MAU stages, with the goal to maxi-
mize the number of single-pass transactions. Recall from before, an
edge e(U,V) with a high weight in the graph means that two tuples
represented by the nodes are frequently accessed within the same
transaction. Therefore, they should be placed into register arrays
of separate MAU stages. In the following, we first ignore the edge
directions and include them later in the discussion.

Overall, to find an optimal assignment of hot tuples to registers,
we can apply a max-cut to partition nodes into 𝑁 disjoint sub-
graphs that we aim to assign to 𝑁 register arrays of the different
MAU stages in a switch pipeline. The resulting partitions represent
the set of tuples that should be allocated to the same register array
of a stage. However, the max-cut problem of a graph is NP-complete
[33]. Fortunately, many sophisticated approximation algorithms
for the max-cut problem exist [18–20, 34, 54, 59]. For solving the
max-cut problem of finding a partitioning of the hot-set on the
switch in P4DB, we use MQLib [18] with additional constraints on
the maximum size per partition, such that all tuples in a partition
fit into the registers of a stage. Figure 5 (left-hand-side) shows an
example of a graph that was constructed for six tuples (T1 to T6)
with weights representing access frequencies and the resulting
max-cut for this graph into 3 different partitions.

After applying the max-cut, in the next step of the data layout
algorithm, we need to assign each resulting partition to a register
of the switch stage. For doing this, we now take directions of edges
in the cut into consideration. In case the edges in a cut are either
bidirectional edges or if all unidirectional edges in the cut between
two partitions point into the same direction, then we assign the
partitions with the outgoing edges into an earlier switch stage. For
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Figure 6: Packet format of switch transactions. Each switch
transaction corresponds to one network packet with a header
and a variable amount of instructions, each of which defines
an operation of a transaction.
example, in Figure 5 (right-hand-side) this is the case for the two
cuts that separate the Partition 1 (blue) from Partition 2 (green)
and Partition 2 (green) from Partition 3 (purple). In this case, we
can simply do a topological ordering of the partitions based on the
direction of the edges in the cuts and assign the partitions in the
resulting order to switch stages.

In case that the edges in a cut point into different directions, we
apply a slightly modified procedure. In this case, we first remove
those edges in a cut such that all point in one direction and the
sum of their weights is smaller than for the edges in the same cut
that point in the other direction. The main idea is that these edges
represent the accesses for which we have to violate the access order,
resulting in a multi-pass transaction to support this order. Hence,
we remove those edges with the total lower access frequency. The
edges that remain in the cut between two partitions now all point
to the same direction, and thus we can apply the procedure as
discussed before to assign partitions to switch registers.

5 IN-SWITCH TRANSACTION PROCESSING
In this section, we describe how hot transactions are executed on
the switch.We first explain the base case where a switch transaction
can be executed in a single pass, before we then discuss transac-
tions that might require multiple passes. Overall, the execution of
hot transactions on the switch provides guarantees for Atomicity,
Isolation and Consistency as we discuss next, while Durability is
guaranteed by the integration into the host DBMS (cf. Section 6).

5.1 Single-Pass Transactions
In P4DB, as discussed in Section 4, we use a model where one
transaction is mapped to one network packet. An interesting aspect
of this model is that we get isolation and atomicity of transactions
on the switch without additional coordination in case a transaction
can be executed in a single pass.

First, we describe why our switch model actually guarantees
isolation out-of-the-box. To better understand why this is the case,
we refer back to Figure 4, which shows the pipelined execution of
transactions in a switch pipeline. The important aspect is that our
model dictates that there is only one transaction per MAU stage and
transactions in different MAU stages are not re-ordered. Hence, the
pipelined execution of transactions on the switch is equivalent to a
serial execution order of transactions that results from the order as
they are routed through the pipeline. For example, in Figure 4 the
execution is equivalent to the serial order: A, B, C, and then D.



Second, another interesting aspect that results from the execu-
tion model in Figure 4 is that it also guarantees atomicity out-of-the-
box, since no lock conflicts or deadlocks can occur on the switch.
However, constraint checks to enable consistency could potentially
still lead to aborts and thus would require additional efforts on the
switch to roll back a transaction in case constraints are violated.
To avoid these additional overheads for single-pass transactions,
we use so-called constrained-writes of P4 to implement constraint
checks. The main idea of a constrained-write in P4 is that a write
is only executed if a predicate is satisfied. This allows us to support
simple constraint checks at the end of a single-pass transaction on
individual tuples, such as writing a transaction balance in Small-
Bank only if its value is larger than zero at the end of the execution.
For supporting more complex constraint checks though, one needs
to fall back to a multi-pass execution scheme.

5.2 Multi-Pass Transactions
Hot transactions that are executed on a switch do not always satisfy
the restrictions for single-pass execution. For example, Figure 6
shows a transaction that can not be executed in a single pass. As we
can see, this transaction contains multiple operations, while the last
two operations access the same register as the first two operations.
Hence, this switch transaction needs to be executed in two passes.
In the first pass, the three instructions at the beginning are executed
and in the second pass the batch of the two remaining instructions.
Yet, if the coordination-free execution would be used for multi-pass
transactions, the isolation of transactions is no longer guaranteed.

To support isolation for multi-pass transactions, we thus provide
a lock-based execution scheme in P4DB. In the following, we explain
the naïve (fallback) approach that can always be used for multi-
pass transactions and discuss further optimizations subsequently.
The main idea of processing multi-pass transactions in the naïve
scheme is that we introduce a so-called pipeline-lock to prevent the
concurrent execution of multiple transactions in the same pipeline.
The pipeline-lock is located in the first MAU stage of a pipeline.
When a new transaction arrives at the switch pipeline and another
multi-pass transaction is currently in the pipeline, the lock prevents
its execution. This transaction is then scheduled for another pass
through the switch using recirculation of the network packet.

Figure 7 shows an example with four transactions, where trans-
action 𝐵 is a multi-pass transaction and all other transactions are
single-pass. The pipeline-state is shown for multiple cycles hor-
izontally to show the flow of transactions over time. In cycle 1,
the single-pass transaction 𝐴 is already in stage 1 when the multi-
pass transaction 𝐵 arrives in stage 0. Hence, transaction 𝐴 is unaf-
fected by the pipeline-lock that transaction 𝐵 acquires. However,
the pipeline-lock of transaction 𝐵 then blocks the execution of fol-
lowing transactions 𝐶 and 𝐷 which are thus recirculated. Once
transaction 𝐵 starts its second pass though, it can directly unlock
the pipeline-lock and thus 𝐶 and 𝐷 could be directly admitted to
the pipeline. This is possible because all transactions follow serial
execution and can not overtake transaction 𝐵 in the pipeline.

Again, this multi-pass scheme guarantees isolation and atomicity
of transactions since the pipeline-lock enables a serial execution and
prevents violation of conflicts. Moreover, it also handles constraint
checks to achieve consistency. To execute constraint checks in this
model, additional passes of a transaction are required (once the
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Figure 7: Processing of multi-pass transactions using a
pipeline-lock. Each transaction checks the pipeline-lock in
the first stage and can be recirculated to guarantee consis-
tency of stored data, while one transaction is doing multiple
passes through the switch pipeline.
execution of the normal operations is complete) to not only check
the constraints, but eventually also to roll back changes in case a
constraint is actually violated.

5.3 Optimizations for Multi-Pass Transactions
This section gives a short overview of optimizations we imple-
mented for multi-pass transactions in P4DB.

Fine-grained Locking. The switch’s transaction throughput can
be limited by the pipeline-lock that is used to preserve the consis-
tency during the execution of multi-pass transactions. One opti-
mization is clearly to use more fine-grained locking (e.g., one lock
per MAU stage) with multiple locks for different MAU stages. With
such a locking scheme, multiple transactions could run concur-
rently when they need locks for different disjunct registers in MAU
stages. However, while a single pipeline-lock can be implemented
in P4 by using a single atomic stateful operation on a register, it is
not trivial to implement multiple lock instances for one pipeline,
because a packet can not access a register in a stage twice or undo
lock-acquisition for all locks if for example one lock failed.

An obvious solution is to utilize a bit representation of the lock,
e.g. 64 bits, where each bit represents a separate lock. Unfortunately,
Tofino’s stateful register operations do not support bit-operations
with variable masks as conditions for a compare-and-swap to test
and set the lock. Moreover, using a complex if-cascade to check
each bit separately is also not supported since this would result in
code that can not be executed in a single cycle on the switch (i.e.,
the P4-compiler fails to compile such programs). However, with
the current Tofino generation a 2-bit lock can be supported on the
switch as shown in the pseudocode in Listing 1.

Fast Recirculating. Programmable switches allow recirculating
packets by virtually connecting the output of a port to the input
of the same port. This recirculation port is used as a queue for
multi-pass (or single-pass) transactions which need to wait for their
execution. A main challenge of P4DB is to minimize the time a
pipeline-lock is held.

Therefore, our design uses two recirculation ports. The first
port is used exclusively for transactions which own the lock on the
switch. The second recirculation port is used for transactions which
wait for execution. Since each port contains a separate queue for



1 struct lock_t { bit <8> left; bit <8> right; } // pair of locks
2 Register <... >(...) switch_lock;
3 RegisterAction <...>( switch_lock) try_lock = {
4 void apply(inout lock_t value , out bit <1> rv) {
5 if ((hdr.locks.left + value.left) == 2) {
6 rv = 0; // fail , left lock is already locked
7 } else if ((hdr.locks.right + value.right) == 2) {
8 rv = 0; // fail , right lock is already locked
9 } else {
10 value.left = value.left + hdr.locks.left;
11 value.right = value.right + hdr.locks.right;
12 rv = 1; // requested locks acquired successfully
13 }
14 }
15 };

Listing 1: A 2-bit lock using a single register, in P4.

packets, transactions in the first recirculation port that hold a lock
have a lower waiting time in the queue than the other (waiting)
transactions, which reduces the time a lock is held by a transaction.

Finally, if a recirculation port receives more packets than it can
handle, packets would be dropped. To prevent this, we actually
split waiting transactions round-robin over multiple ports. To avoid
starvation of recirculating transactions, each packet contains a
recirculation counter, which can be used to prioritize the execution
of transactions by the switch flow control as discussed before.
5.4 Processing Details
In this section, we finally discuss several important details of how
(single- and multi-pass) transactions are being processed on the
switch using network packets. A network packet needs to con-
tain all information that is necessary for executing the transaction
on the switch. More precisely, switch packets in P4DB contain a
header which holds important processing information followed
by a variable number of instructions representing the operations
of a transaction as shown in Figure 6. These instructions are the
operations that a transaction needs to run on the register arrays.
Instructions can invoke trivial operations like read, writes or fixed
point integer arithmetic as well as constrained-writes.

In the following, we now discuss the fields which hold processing
information individually (shown in gray in Figure 6). The first field
is_multipass is a boolean flag which defines whether the incoming
transaction can be executed in a single pass or not. Following that,
a locks array shows the transaction engine which pipeline-locks
need to be acquired in the first pass and freed in the last pass for
multi-pass transactions. For single-pass transactions, this field does
not indicate which pipeline-locks need to be acquired but rather
which pipeline-locks need to be free such that the transaction can
be admitted to a pipeline. The last field in the header is a counter
nb_recircs to track the number of times a packet is recirculated. It
is incremented every time a transaction could not be executed and
thus is recirculated. The switch flow control then uses this counter
to prioritize long waiting transactions.

Finally, it is important to note that the processing information
in packets must be initialized by database nodes that issue a hot
transaction. Therefore, we keep all relevant information directly
on the database nodes. For example, the information about the
data layout (which tuple is stored in which MAU stage) is kept
in an index structure redundantly per database node. That way, a
database node can decide whether a transaction can be executed in
a single pass or if multiple passes are required. More details about
this are explained next in Section 6.
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6 INTEGRATIONWITH HOST DBMS
In this section, we discuss what is needed to integrate the switch
execution into the host DBMS of P4DB.

6.1 Hot Transactions
As a first aspect, we discuss how the execution of hot transactions
can be integrated into the host DBMS. Warm transactions that span
across cold and hot tuples will be discussed next.

Execution Scheme. Most importantly, for executing hot transac-
tions database nodes of the host DBMS need to trigger the execution
of hot transactions. Hence, as a first extension, database nodes need
to check for each transaction whether it accesses only tuples in the
hot-set, otherwise the transactions is cold (or warm as we discuss
next). To efficiently find out if a transaction accesses only hot tuples,
we use an index that stores the keys of hot tuples. This index is
replicated to all database nodes. Since it is accessed frequently and
its size is small, it resides in CPU caches most of the time. Also, in
the same index, we keep information in which stage and register a
hot tuple is located on the switch. This information is used for a
hot transaction to determine if it is a single-pass transaction or not,
and thus to set the header fields of the network packet accordingly.
Finally, secondary indexes are supported by keeping them on the
database nodes in P4DB; e.g., for a lookup the secondary key is
first mapped to a primary key to find out if a hot tuple is accessed.
Moreover, the secondary indexes are updated based on the results
of the switch transaction (which is possible in our case since switch
transactions cannot fail).

Durability and Recovery. A second important aspect is that the
database nodes handle the durability and recovery for switch trans-
actions. To enable durability of switch transactions, database nodes
use their local write-ahead log and append the operations for switch
transactions they trigger to this log. In addition, to enable a correct
recovery of the switch state from the different local logs of data-
base nodes (in case of a switch failure), the switch adds a unique
transaction ID to each switch transaction that it executes, which
represents the (serial) execution order of the transactions on the
switch. This ID is sent back together with the results of the read-
and write-operations of a switch transaction to the database node
in the response packet. The information is then appended to the
write-ahead log of the database node.

In case the switch fails and needs to be recovered, the information
in the local logs, which includes the globally ordered transaction IDs
of the switch transactions, can then be used to recover a consistent
state of the switch. A special case to consider for recovery are switch
transactions that are in-flight (i.e., they are sent out but the result
was not received by nodes). In P4DB, it is important to note that
switch transactions count as committed before they are sent out
since they cannot abort anymore. Therefore, a switch transaction
and its intended read-/write-operations are appended to the log
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before the switch transaction is sent. The only info missing on
database nodes at this point in the log is the unique transaction
ID of switch transactions as well as the results of the read/write-
operations. To handle this case, P4DB aims to restore the order from
dependencies in the read/write-set (as we discuss in more detail for
warm transactions). If no such dependency is detected, any order
of switch transaction can be used during recovery for log replay.

6.2 Warm Transactions
A second important aspect is how warm transactions are supported
in P4DB that can span across both cold and hot tuples.

Execution Scheme. The main idea of the execution scheme for
warm transactions is shown in shown in Figure 8. An important
aspect of this scheme is the host DBMS first ensures that all opera-
tions on cold items will not abort before triggering the operations
on the hot items on the switch using sub-transactions.

In P4DB, we use the following procedure to guarantee that oper-
ations on cold items cannot abort: In the first step, P4DB acquires
the locks on all cold items on the database nodes. Once all locks
on cold items are acquired, P4DB then executes operations on the
cold items and checks all constraints using a sub-transaction that
runs on the database nodes only. Once the sub-transaction on the
cold items is ready to commit, P4DB sends out a network packet
to the switch to trigger a sub-transaction, which then executes the
operations on the hot items. After receiving the executed switch
transaction, the updates on the hosts on cold items are committed
as we discuss below (see 2PC).

It is important to note that the execution model above does not
support cases where warm transactions need to access cold tuples
after warm tuples (e.g., a write to a cold tuple that depends on a
read of a hot tuple). We support this case in P4DB by additionally
offloading those cold tuples to the switch during the offload phase
of P4DB. For the cold tuples stored on the switch, we then use the
very same processing scheme as for hot tuples (i.e., they are treated
as if they were hot).

Durability and Recovery. Durability and recovery for warm trans-
actions is handled similarly as for hot transactions. The only dif-
ference is that we need to consider additional failure cases. In the
following, we discuss the most complex case where both a node and
the switch that are involved in a warm transaction fail after switch
transactions were sent out and before the result is received. Figure 9
shows an example for this case. In this scenario, the globally-unique
transaction ID of T1 is missing in the log of Node1 and therefore
the execution order of T1 and T2 cannot be restored during recov-
ery, because it is not clear if T1 was executed before or after T2.
However, we can still reconstruct the order of the two switch trans-
actions for recovery by analyzing the logs of all database nodes
for dependencies using the read/write-sets. For example, as shown
in Figure 9, the order (T1 before T2) could be restored from the
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Figure 10: Coordination of the distributed commit of warm
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read/write-set of T2 in the log of Node2 which indicates that T2
reads 𝑥=3 that must have been written by T1. If there were no
dependency between T1 and T2, any order could be used 1.

Integration with 2PC. Finally, a last important aspect that is dif-
ferent for warm transactions compared to hot transactions is that
we need to coordinate the commit across multiple nodes (in case the
cold part is distributed) and the switch. To coordinate the distributed
commit of warm transactions, we extend the classical Two-Phase-
Commit (2PC) protocol in P4DB as shown in Figure 10. Similar to
the traditional 2PC, in our scheme a coordinator decides whether
a warm transaction can commit based on the votes of all partici-
pating nodes similar to the normal 2PC. However, in addition if
all nodes voted on commit, the switch sub-transaction is sent out
by the coordinating node to the switch. The switch then executes
the switch transaction and broadcasts the results using a multicast
operation to all database nodes, which then finally commit their
results without requiring additional round-trips. In case only one
database node is involved in a warm transaction, we do not rely
on 2PC. Instead, the switch sub-transaction can be sent out by the
coordinator without executing a voting phase.

An interesting point of our integration with the 2PC protocol is
that sub-transactions on the switch can directly commit once they
are executed; i.e., sub-transactions on the switch do not need to
wait for the commit on the database nodes. Note that this is not a
problem since switch sub-transactions of warm transactions will
commit in the same order as the host sub-transactions of warm
transactions. The reason is that in case there is a conflict on cold-
items between two warm transactions, only the warm transaction
which holds the locks on the conflicting cold items will send out the
sub-transaction on the hot items. Otherwise, if there is no conflict
of warm transactions on the cold tuples, then the sub-transactions
on the hot-items can be executed and committed independently
without coordination.

7 EXPERIMENTAL EVALUATION
In the following, we present the results of our evaluation of P4DB.
We first compare P4DB to other baselines using three OLTP bench-
marks (YCSB, SmallBank, TPC-C). Afterwards, we then present
microbenchmarks that show a more in-depth analysis of P4DB.

7.1 Setup and Baselines
Setup. The experimental setup consists of an 8-node cluster,

where 6 of the nodes are equipped with two Intel(R) Xeon(R) Gold
1To discuss additional failure cases, we plan to publish an extended technical report.



5120 2.2GHz CPUs and 2 nodes are equipped with two Intel(R)
Xeon(R) Gold 5220 2.2GHz CPUs. Each node is connected to an In-
tel Tofino switch (BF2556X-1T) [5] via a 10G NIC (Intel X540-AT2).
Hyper-threading is enabled for all nodes, but only one socket with
256GB of main-memory is used to avoid cross-socket communica-
tion to the NIC. The operating system is Ubuntu 18.04.1 LTS with
Linux kernel 4.15.0 installed on all nodes. P4DB is implemented
in C++20 and compiled with gcc-10. We utilize DPDK 20.08 [17]
for optimized network performance and communication between
the database nodes. The switch’s control-plane logic of P4DB is
implemented in C++ and the switch’s data plane logic of P4DB is
implemented in P4 and compiled using Intel SDE-9.3.0 [23].

P4DB Implementation. Our prototype implementation of P4DB2
includes the switch that we integrated into a shared-nothing dis-
tributed in-memory DBMS as discussed in Section 6. To allow the
execution of cold transactions in P4DB, we implemented two com-
monly used variants of Two-Phase Locking (2PL) with deadlock
prevention: NO_WAIT aborts a transaction as soon as a lock request
is denied. For WAIT_DIE, transactions are assigned a unique times-
tamp at transaction start and transactions only wait for a lock if it
is owned by a transaction with a younger timestamp, otherwise it
aborts. Similar to other recent papers [2, 21, 71], we do not include
other deadlock detection algorithms such as DL_DETECT since
these schemes are more complex and typically do not provide any
significant benefits.

Baselines. As a first baseline, we use the same prototype, however,
our switch acts only as a traditional network switch and thus does
not execute in-switch transactions (and hence the baseline is called
No-Switch). As a second baseline, we used another variant of our
prototype and use the switch only as a lock manager for hot tuples
as suggested in [68] (called LM-Switch).

7.2 Workloads
For our experiments, we used three different OLTP benchmarks
(YCSB, SmallBank, TPC-C). As the performance metric, we report
throughput of committed (hot and cold) transactions per second
while we also discuss latency at the end of the experiments. In the
following, we describe each workload and how we defined the hot-
set of tuples based on prior papers. Moreover, for all benchmarks,
we vary the transactional load (i.e., the number of worker threads
per database node) to analyze the effect of increased contention
on the hot-set. In particular, we use configurations from 8 worker
threads (normal load) to 20 worker threads (high load) per node,
each executing a single transaction at a time.

YCSB. The Yahoo! Cloud Serving Benchmark [13] consists of a
single table that is partitioned round-robin across all nodes. Similar
to other papers [66, 72], we define a transaction as a group of 8
read/write-operations. We also populate the table with 1 billion
entries consisting of an 8 byte key and 8 byte value.

In our evaluation, we use workloads A-C which are characterized
by different ratios of read/write operations within a transaction to
mimic update-heavy or read-heavy workloads (A - Update heavy
50/50, B - Read heavy 95/5, C - Read only 100/0 ). To simulate skew
in the access patterns of tuples, similar to [67], we use a hot-set

2https://github.com/DataManagementLab/p4db

consisting of 50 key-value pairs per database node which receive
75% of all accesses.

SmallBank. The SmallBank benchmark models a banking ap-
plication where transactions perform different operations on 1 or
2 customer accounts. The original workload contains 5 different
types of transactions [1]. Similar to [16, 31], we additionally include
a Payment transaction that transfers money between two accounts.

Compared to YCSB, SmallBank represents a workload with a
fixed read-ratio of 15% and uses 1 million bank accounts. However,
the difference to YCSB is that it contains read-dependent-writes (as
well as some simple constraints), which makes it more complex to
implement and shows the need for the declustered data layout in
P4DB. To simulate skew in the access patterns of tuples, similar to
[30], we used different hot-sets that vary in their sizes between 5
and 15 tuples per database node and that are accessed by 90% of all
transactions.

TPC-C. The TPC-C benchmark [62] is the most complex bench-
mark in our evaluation and consists of 9 tables and 5 transaction
types. Although TPC-C is designed to be highly partitionable by
warehouse, it still contains several contention points. For example,
the NewOrder transaction increments the global next-order-id per
district and the Payment transaction updates the total balance per
warehouse that causes contention on individual tables.

For our evaluation, we use a mix of only NewOrder and Payment
transactions, similar to other papers [4, 66, 71], since these account
for 90% of the transactional workload. Due to their complexity
and the mix of cold and hot tuples within transactions, the logic
of this workload requires warm transactions, unlike the previous
benchmarks, and thus shows a different aspect of P4DB than the
benchmarks before.

7.3 YCSB Experiments
In this experiment, we first validate our approach with YCSB as
the most comprehensible OLTP benchmark. More precisely, we
compare the throughput for YCSB using P4DB with its in-switch
execution of hot transactions with the other two baselines; i.e.,
switch as lock-manager (LM-Switch) and a traditional distributed
DBMS without using the switch for OLTP (No-Switch).

Varying Contention. In the first experiment, we compare the
performance of P4DB and the baselines for a varying degree of
contention. To increase the contention, we scale the number of
worker threads as described before. Figure 11 (upper row) compares
the speedup of P4DB w.r.t throughput over the No-Switch baseline,
as well as the speedup of the LM-Switch over the same baseline.
As we can see, P4DB outperforms both baselines and provides a
speedup of up to 5× over the No-Switch baseline for the highest
contention cases. The speedup of P4DB is the highest for workload
A, due to its higher write-ratio causing decreased performance of
both baselines.

Different from P4DB, the baseline which uses the switch as lock-
manager (LM-Switch), does not yield any significant speed-up. In
general, while LM-Switch enables high throughput for uniform
workloads as shown in [68], this approach provides only minimal
benefit for skewed workloads. The reason is that the overall latency
of how long locks are held on contended items is not really reduced

https://github.com/DataManagementLab/p4db
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Figure 11: YCSB Results — The speedup of P4DB and LM-
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Figure 12: Benefits of switch transactions in YCSB. The switch
executes the 75% hot transactions in the workload. In a tradi-
tional DBMS without switch a majority of those is aborted
due to contention.

with this approach, which is very different from the coordination-
free model of P4DB.

Varying Distributed Transactions. Another aspect that is impor-
tant in the context of P4DB is distributed transactions, since they
could further amplify the effect of contention (due to higher ac-
cess latencies of hot tuples). To investigate further the results from
the previous experiment and to show the benefits of our in-switch
approach for distributed transactions, we vary the degree of dis-
tributed transactions using themaximum number of worker threads
from the previous experiment per node.

The results of this experiment can be seen in Figure 11 (lower
row) which shows the speedup for P4DB and LM-Switch over No-
Switch. Again, as before, P4DB provides a significant speedup while
LM-Switch provides only limited gains for similar reasons. An inter-
esting observation is that a higher degree of distributed transactions
results in an increased throughput in P4DB leading to a speedup
of more than 6× for 100% distributed transactions due to the lower
network latency (i.e., only ½ RTT) for hot tuples. Furthermore, at 0%
distributed transactions, P4DB still provides a significant speedup
over theNo-Switch baseline. Here, the main reason is that the switch
is much more efficient in processing transactions on the hot items
than a normal database node.

Break-down of Hot and Cold Tx’s. To better understand the ef-
fects of why P4DB dominates the throughput, we now present a
throughput break-down of committed hot/cold transactions. For
this experiment, we analyze the throughput (absolute results) for

20% distributed transactions and 20 worker threads per database
node, as in the previous experiment. We decided to not show the
LM-Switch baseline, since the break-down is very similar to the one
of No-Switch.

Figure 12 shows the results of this experiment, where the frac-
tions are marked for each bar. We see that for the update-heavy
workload A, with No-Switch only a low fraction of hot transactions
commits (dark grey, dark red) due to contention. P4DB, on the
other hand, has a much higher commit ratio for hot transactions
of around 75% (dark blue, dark yellow). For workload C, which
is a pure read-only workload, the ratios for hot transactions in
No-Switch and P4DB are the same (at approx. 75%) since no aborts
happen for No-Switch on hot tuples. Nevertheless, P4DB’s overall
throughput is higher in all workloads, including workload C. More-
over, the switch throughput in P4DB is not affected by different
read-write ratios of the workloads 𝐴-𝐶 , since all transactions can
be executed (lock-free) in a single pass.

7.4 SmallBank Experiments
In this experiment, we next compare the throughput for SmallBank
using P4DB to No-Switch, which, as mentioned earlier, represents a
more challenging workload as YCSB due to read-dependent-writes
that could lead to multi-pass transactions. For executing this work-
load in P4DB, we use an optimal declustered data layout. We also
show the effect of a non-optimal data layout in our microbench-
marks later. Furthermore, we dropped the LM-switch baseline from
all subsequent experiments since it similarly shows only minimal
gains over No-Switch as for YCSB.

Varying Contention. Similar as for YCSB, we first start with an
experiment where we increase the load and thus the contention
on a fixed set of hot tuples. Additionally, we use different hot-set
sizes (5, 10, 15 hot tuples per database node) instead of different
read/write ratios that we evaluated for YCSB.

The results of this experiment are shown in Figure 13 (upper row).
In case for the smallest hot-set, P4DB again provides a speedup
of up to 3× for the largest number of worker threads over the No-
Switch baseline. Especially for the smallest hot-set, P4DB achieves
high switch-throughput due to its single-pass execution model.
Moreover, as the hot-set size increases and the contention decreases,
P4DB still can provide a significant speedup of up to 2×.

Varying Distributed Transactions. Analogous to YCSB, we vary
the amount of distributed transactions for SmallBank while fixing
the number of workers to 20 per database node. Figure 13 (lower
row) shows the results. With increasing fraction of remote transac-
tions, we again see a speedup of P4DB over No-Switch even though
the workload is more challenging as YCSB as discussed before due
to read-dependent-writes. However, due to our declustered data
layout of P4DB on the switch, all hot transactions in SmallBank
can be executed efficiently in a single pass on the switch, resulting
in a similar speedup as before for YCSB.

7.5 TPC-C Experiments
In this experiment, we use TPC-C as a complex benchmark. As
mentioned before, in TPC-C transactions cannot be implemented
as solely hot or cold transactions, but it requires warm transac-
tions that span across hot and cold tuples to include the switch
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Figure 13: SmallBank Results — P4DB achieves a near-linear
speedup for increased contention (upper row) and an in-
creased ratio of distributed transactions (lower row).
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Figure 14: TPC-C Results — Even though warm transactions
are used, P4DB yields a significant speedup for increased
contention (upper row) and an increased ratio of distributed
transactions (lower row).

in the transaction processing. To be more precise, we offloaded
all contended columns of the warehouse and district tables with
write-accesses as well as stock columns of most ordered items to
the switch. An interesting question thus is how much gains P4DB
provides given this more challenging workload.

Varying Contention. The goal with TPC-C is to show whether
using the switch as an accelerator when using warm transactions
helps to increase overall system throughput. Again, we first scale the
amount of worker threads per database node to show the effect of
an increased contention while using a fixed ratio of 20% distributed
transactions. We additionally vary the number of warehouses as
they influence contention as well.

The results of this experiment are shown in Figure 14 (upper row).
Overall, we see that with the highest contention configuration of 8
warehouses and 20 worker threads, P4DB still achieves a significant
speedup of more than 2×. However, clearly, when increasing the
number of warehouses to 16 and 32, the contention gets lower
which decreases the gains. For example, with 32 warehouses, the
speedup decreases to 1.3×.

Varying Distributed Transactions. This experiment shows the
impact of a varying degree of distributed transactions when using
warm transactions. For NewOrder, we varied the probability that
an ordered item is located in a remote warehouse and for Payment
that the paying customer is located at a remote warehouse.

Figure 14 (lower row) shows the results. Again, as for YCSB and
SmallBank when increasing the ratio of distributed transactions,
the access conflicts for No-Switch become more visible since more
of the warm transactions need to wait for network round-trips and
thus the latency for those transactions increases. In contrast, P4DB
reduces the network round-trip cost for hot items, which leads to
speedup increases of up to 2.5× compared to No-Switch.

7.6 Microbenchmarks
This section presents microbenchmarks to further understand de-
tails of the transaction execution on the switch when using P4DB.
7.6.1 Varying Hot/Cold Ratio. In the previous experiments, we
used a fixed ratio of hot to cold transactions. Thus in this mi-
crobenchmark, we further investigate the impact using different
ratios. As a workload, we show the results for YCSB-A with 20%
remote transactions, but the findings generalize to other workloads.

Figure 15a shows the absolute throughput, while Figure 15b
shows the corresponding speedup of P4DB over No-Switch. As we
see, when the fraction of hot transactions increases, the increased
contention on hot tuples leads to a lower throughput of No-Switch
caused by a higher abort rate. In stark contrast, P4DB’s throughput
increases with more hot transactions, resulting in a speedup of
more than 50× for 100% hot transactions. With 0% hot transactions,
P4DB and No-Switch have a similar performance because the switch
then only redirects cold transactions to database nodes and does
not process any hot transactions.
7.6.2 Optimizations of Switch Processing. In this microbenchmark,
we study the effect of the different optimizations we outlined in
Section 5.3. For evaluating these effects in isolation, we use the
hot (i.e., switch-only) transactions of the YCSB-A workload only.
As a baseline (Unoptimized), we use a random data layout without
any of the optimizations in Section 5.3 (i.e., fast recirculation and
fine-grained locking turned off). We then turn on these optimiza-
tions one at a time, which optimize the efficiency of multi-pass
transactions. Finally, we apply our optimal data layout, which aims
to avoid multi-pass transactions as much as possible.

The results are shown in Figure 15c. As we can see, the first
optimization called Fast-Recirculate, which creates a fast path for
recirculating transactions that already own a pipeline-lock, leads
to a speedup of approximately 1.66× in P4DB. As a second opti-
mization, we then applied fine-grained locking, which allows that
two multi-pass transactions can be executed at the same time. This
optimization together with the previous one results in a speedup of
2.6×. Finally, when applying our optimal data layout, we can further
boost the performance since the need to use multi-pass transactions
is significantly reduced. As a result, when turning on all optimiza-
tions and using the optimal data layout, we see an overall speedup
of 3.26× compared to the baseline (No Optimization).
7.6.3 Single- vs. Multi-pass switch transactions. As shown before,
our data layout efficiently helps to improve the throughput of P4DB
by enabling single-pass execution for more transactions. While in
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Figure 16: Impact of the optimal data layout for the three
workloads. SmallBank shows the highest benefits, while TPC-
C is limited by warm transactions and hence the data layout
has almost no effect.

the previous experiment we showed the effect only for the YCSB-A
workload, in this experiment we use all three workloads to com-
pare the effect of our data layout against a layout where tuples are
randomly assigned to MAU stages (called worst case). We addition-
ally report the average latency of transactions under the two data
layouts. The results are shown in Figure 16.

We first discuss the effect of the data layout on the throughput.
For SmallBank, we see that our data layout (called optimal case)
has a much more significant effect on the throughput than for the
YCSB-A benchmark. This effect is caused by a higher number of
multi-pass transactions for a random data layout in SmallBank that
cause an inferior performance. An optimal data layout, for TPC-C,
has almost no effect compared to the random data layout because
this workload uses warm transactions where the major limiting
factor is the execution of cold sub-transactions rather than the
execution of multi-pass transactions on the switch.

If we now look at the latency, we see similar effects. First, for
YCSB and SmallBank, the optimal data layout enables that hot trans-
actions can be executed in a single pass. Hence, the latency remains
(almost) stable with increasing load (# of threads per server). This
is in contrast to the random data layout, which causes multi-pass
transactions (that require a pipeline-lock) which leads to increased
latency under increased load. For TPC-C, latency increases for both
data layouts instead since TPC-C uses warm transactions and here
the latency is dominated by the cold sub-transactions. Overall, the
average latencies are low (i.e., in the order of 𝜇s) for all benchmarks.
7.6.4 Hot-set exceeds Switch’s Capacity. An interesting question is
how P4DB performs if the hot-set size exceeds the switch’s capacity.
Hot-sets that exceed the switch capacity can be supported in P4DB
by storing a part of the hot-set on normal nodes. For showing the
effect of large hot-sets, we use the YCSB-Aworkloadwith increasing
hot-set sizes. Furthermore, we use different tuple-width (i.e., values
of different sizes) leading to a lower switch capacity in total number
of rows the switch can store.

No-Switch Switch-Capacity: 1K Rows Switch-Capacity: 10K Rows
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Figure 17: Throughput with growing hot-sets for YCSB-A.
Different switch capacities result from different tuple widths.
If the hot-set is beyond the switch capacity, the throughput
in P4DB degrades gracefully and reaches the throughput of
a DBMS without switch support.

Figure 17 shows how the throughput behaves while growing the
hot-set above 4 different fixed switch capacities respectively, the
largest being 650K rows. An important fact is that the throughput
gracefully degrades when the hot-set outgrows the switch capacity
in all cases (Note the log-scale of the x-axis). For example, for the
largest switch capacity, P4DB can still achieve approximately 3
million txn/s for a hot-set of 2 million tuples which exceeds the
switch capacity by more than 2×.
7.6.5 Latency-Breakdown for TPC-C. In Section 7.5, we showed
that P4DB can achieve a performance gain of more than 2× speed-
up for TPC-C under high contention (8Warehouses). To understand
where the benefits of using P4DB come from, we now show a break-
down of the latency for committed transactions for a setup with
8 nodes each with 20 workers. The results in Figure 18a show the
time spent in each component for our baseline without a switch and
P4DB. Please note, that the total latency shown in this experiment
is minimally increased due to profiling overhead compared to the
other experiments before.

A first effect visible in Figure 18a is that P4DB can significantly
reduce the time it takes transactions to synchronize on latches to
check lock requests compared to the baseline (called Lock Acquisi-
tion). This is due to the execution scheme of P4DB which offloads
contended items to the switch (i.e., warehouse, district or hot-stock
items for TPC-C). Since P4DB can execute hot transactions without
any locks, the average time spent for Lock Acquisition is reduced
(i.e., locking is only needed for cold items). Furthermore, a second
effect that leads to the benefits of P4DB is that remote access latency
of transactions is reduced significantly since remote transactions
on hot items only need half a round-trip to the switch instead of
a full round-trip to other nodes. Overall, this results in less time
needed to perform the actual work (i.e., remote reads/writes) for
remote transactions, as shown in Figure 18a.
7.6.6 Existing Optimizations for Distributed Transactions and Con-
tention. In this experiment, we analyze how existing optimizations
for distributed transactions processing and contention compare to
P4DB. To show the effects of existing optimizations, in this experi-
ment we start with a Plain 2PL protocol using two-phase commit
(2PC) for distributed transactions without any additional optimiza-
tions that clearly results in the lowest throughput. Afterwards, we
add typical optimizations for distributed transactions incrementally
to the baseline including P4DB. We use the TPC-C workload which
is the most complex workload from the previous experiments. Due
to space restrictions, we show the results for 8 warehouses only
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Figure 18: Further Microbenchmarks for TPC-C: (a) Shows
the latency-breakdown to understand where the benefits of
using P4DB come from. (b) shows effects of existing opti-
mizations for processing distributed and hot transactions.
(which results in the highest level of contention). For a higher num-
ber of warehouses we see similar results. The results can be seen
in Figure 18b compared to P4DB.

As a first optimization, we apply optimal data partitioning to im-
prove data locality of distributed transactions (called +Opt. Part. in
Figure 18b). In order improve locality in OLTP various partitioning
schemes such as [15] have been proposed. For showing the general
effect of locality in this experiment, we use two different TPC-C
configurations — one with 80% and another one which results in
20% remote transactions respectively. As a second optimization,
we additionally apply a contention-centric execution scheme on
top of the optimal data partitioning. For the experiment, we added
a recent scheme called Chiller [71] to our baseline which builds
on 2PL but it aims to increase throughput on hot and contented
items by deploying a two-region execution scheme with early lock
release for contended items instead of using plain 2PL. Alterna-
tively to Chiller, we offload the hot-set of hot tuples to the switch
and use P4DB for executing transactions on the contended items.
The results show that the optimizations significantly improve the
2PL/2PC protocol but P4DB still outperforms these optimizations
clearly.

8 RELATEDWORK
In the following, we discuss relatedwork using INP for OLTP (which
is the main target in this paper) in detail. In addition, other related
work of using INP for OLAP exists such as [8, 39, 55, 56].

INP Support for OLTP. While INP has been used to support OLTP,
to the best of our knowledge P4DB is the first approach to of-
fload OLTP processing to programmable switches. NetCache [29]
proposed a key-value store on a programmable switch to cache
hot-items. Different from this approach, P4DB supports the execu-
tion of multiple operations as a transaction directly on the switch,
while NetCache only supports simple (read/write) operations. In
addition, NetCache uses a different approach for reads and writes,
which leads to inferior performance of update-heavy workloads.
Another direction is to support replication schemes by INP. For ex-
ample, Harmonia [73] implements a replication protocol for OLTP
DBMSs in a switch data-plane to overcome scalability issues. More-
over, NetChain [28] proposes a replication protocol across multiple
programmable switches. All these approaches are clearly orthogo-
nal to P4DB. Furthermore, another orthogonal work is [27] which
proposes an INP approach called Transaction Triaging that manip-
ulates streams of transactions by batching, re-ordering, steering,
and protocol conversion of transactions on a programmable switch
to improve efficiency. Finally, NetLock [68] proposes a central lock-
manager which directly processes lock-requests of hot items in the

switch’s data-plane. However, as we have shown in Section 7.3,
NetLock provides inferior performance for OLTP workloads under
high contention when compared to P4DB.

OLTP under High Contention. Another line of work aims to re-
duce contention with specialized protocols in the host DBMS. For
example, one direction is to reduce contention through enforc-
ing determinism to part of, or all of the concurrency control (CC)
unit [14, 31, 60]. Another direction is Quro [65], which re-orders
operations inside transactions in a centralized DBMS with 2PL to
reduce lock duration of contended data. While this is relevant in the
context of this paper, almost all these works deal with single-node
DBMSs and do not have the notion of distributed transactions. In
the context of distributed DBMS, there has recently been some work
to leverage high-speed networks and data partitioning to reduce
contention in OLTP [71]. While this work clearly targets a similar
problem, it is orthogonal and thus an interesting direction would
be to combine such an approach with P4DB in the future.

SmartNICs for OLTP. Previous work leveraged SmartNICs as co-
processors to offload distributed transaction processing [46, 58].
However, processing hot data on SmartNICs has several draw-
backs compared to programmable switches. First, programmable
switches are connected to all network nodes centrally and are not
bandwidth-limited like SmartNICs with only a few network ports
(e.g. 2x50GbE). Processing at full aggregated network-bandwidth is
enabled by P4DB’s pipelined and abort-free transaction execution
engine implemented on the switch ASIC. Second, and more impor-
tantly in the OLTP context, programmable switches can be reached
in only ½ network latency compared to remote SmartNICs which
require a full roundtrip to a node which hosts the SmartNIC. While
certain SmartNICs that use general-purpose processors for INP
allow more complex per-packet processing, they thus also require
coordination of data-accesses by multiple threads (e.g. through
locking, similar to normal databases nodes) which presents a major
bottleneck for hot items as we have shown. Furthermore, upcoming
switch models provide increasing resources for computation and
memory [25, 26] or even FPGAs as on-chip co-processors [3].
9 CONCLUSION
In this paper we presented P4DB, a first-of-its-kind approach that
leverages a programmable switch to accelerate highly contented
OLTP workloads by offloading transaction processing to the switch.
For this, P4DB exposes the switch as an additional database node
that not only stores hot tuples, but also implements pipelined and
abort-free transaction processing directly in the network’s data
plane. The two major benefits of our in-switch design are (1) access
in only ½ latency and (2) aggregated processing bandwidth of all
connected nodes. In our evaluation, we have shown that P4DB
can thus effectively mitigate contention, i.e., skew on hot tuples,
yielding a substantial increase in throughput due to its pipelined
transaction execution on a switch.
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