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Abstract
In this paper, we set out the goal to revisit the results of “Starring
into the Abyss [...] of Concurrency Control with [1000] Cores” [27]
and analyse in-memory DBMSs on today’s large hardware. Despite
the original assumption of the authors, today we do not see single-
socket CPUs with 1000 cores. Instead multi-socket hardware made
its way into production data centres. Hence, we follow up on this
prior work with an evaluation of the characteristics of concurrency
control schemes on real production multi-socket hardware with
1568 cores. To our surprise, we made several interesting findings
which we report on in this paper.
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1 Introduction
We are now six years after “Starring into the Abyss [...] of Concur-
rency Control with [1000] Cores” [27], which presented an evalua-
tion of concurrency schemes for in-memory databases on simulated
hardware. The speculation of the authors at that time was that to-
day we would see hardware providing single-chip CPUs with 1000
cores. However, so far reality is different [11, 20]. Instead of single-
chip CPUs with 1000s of cores, multi-socket machines are prevalent
and made their way into production data centres, indeed offering
1000s of cores. Accordingly, in-memory DBMS are facing not only
challenges of massive thread-level parallelism, such as coordination
of hundreds of concurrent transactions as predicted by [27], but
large multi-socket systems also expose in-memory DBMS to further
challenges, such as deep NUMA topologies connecting all CPUs
and their memory as in Figure 1.

In this paper, we set out the goal to bring in-memory DBMS
to a 1000 cores on today’s multi-socket hardware, revisiting the
results of the simulation of [27] based on the original code, which
the authors generously provide as open source. That is, we follow
up on [27] with an evaluation of the characteristics of concurrency
control schemes on real production multi-socket hardware with
1568 cores. To our surprise, we made several interesting findings:
(1) First, the results of running the open-source prototype of [27]
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Figure 1: System topology of the HPE SuperdomeFlex [10,
12].

on today’s production hardware revealed a completely different
picture regarding the analysed concurrency schemes compared to
the original results on simulated hardware. (2) Afterwards, in a
second “deeper look” we analysed the factors leading to the sur-
prising behaviour of the concurrency control schemes observed
in our initial analysis, where we then find further surprises such
as unexpected bottlenecks for workloads with a low conflict rate.
(3) Based on these findings, we finally revisited the open-source
prototype of [27] and reran the evaluation with our optimised ver-
sion of DBx1000, which we think helps to establish a clear view on
the characteristics of concurrency control schemes on real large
multi-socket hardware.

In the following, we first report the concrete setup used in this
paper (Section 2) and then discuss our findings (Section 3-5).

2 Setup for our Experimental Study
In the following, we provide a brief overview of the concurrency
control (CC) schemes, the hardware as well as the benchmarking
environment used in our evaluation.

Bouquet of Concurrency Control: Table 1 summarises the evalu-
ated CC schemes. They range from lock-based CC, with diverse
mechanisms against deadlocks, to timestamp-ordering-based CC,
including multi-versioning, 2-versioning, coarse locking, and ad-
vanced ordering. For details on these CC schemes, we to their
original publications [2, 3, 16, 19, 25, 28] and to [27]. The first
seven CC schemes in Table 1 correspond to the prior evaluation
in [27]. We further include the more recent schemes SILO [25] and
TICTOC [28], not included in the original study. Unfortunately,
TIMESTAMP from [27] has a fatal bug in the latest version of the
prototype, so we excluded this scheme from our experiments.

https://doi.org/10.1145/3399666.3399910
https://doi.org/10.1145/3399666.3399910


DAMON’20, June 15, 2020, Portland, OR, USA Tiemo Bang, Norman May, Ilia Petrov, and Carsten Binnig

DL_DETECT 2PL with deadlock detection [2]
NO_WAIT 2PL with non-waiting deadlock prevention [2]
WAIT_DIE 2PL with wait-and-die deadlock prevention [2]
MVCC Multi-version T/O [3]
OCC Optimistic concurrency control [19]
H-STORE T/O with partition-level locking [16]
TIMESTAMP Basic T/O algorithm [2]
SILO Epoch-based T/O [25]
TICTOC Data-driven T/O [28]

Table 1: Bouquet of concurrency control schemes.

NUMA level Latency Bandwidth
local 102 ns 95.1 GB/s
1 hop UPI 150 ns 17.2 GB/s
2 hop UPI 208 ns 16.6 GB/s
NUMALink 380 ns 11.2 GB/s

Table 2: Memory access latency and bandwidth by NUMA
level as measured via Intel MLC [26].

Real Hardware with a 1000 Cores: The prevalent hardware in
production today offering 1000 cores are large multi-socket ma-
chines [11, 20]. As shown in Figure 1, such hardware connects many
CPUs to a single system rather than hosting many cores on a single
CPU. Our HPE SuperdomeFlex system [11] contains 28 Intel Xeon
8180 CPUs. It groups four CPUs into hardware partitions (chassis),
which are then joined together, forming a single cache coherent
system with a total of 1568 logical cores and 20 TB of DRAM. As
shown in Figure 1a, within the chassis each CPU connects to two
neighbouring CPUs and to a NUMALink controller via UPI links.
Then the NUMALink controllers couple all chassis in a fully con-
nected topology (Figure 1b), yielding four levels of NUMA with
performance properties summarised in Table 2.

Comparing this hardware to potential many-core hardware as
simulated in [27] reveals that this multi-socket setup for 1000 cores
differs in many aspects. Importantly, one similarity of today’s hard-
ware to the simulated architecture of [27] is that both communicate
and share cache in a non-uniform manner via a 2D-mesh on the
chip [8] (and UPI beyond), such that the cores use the aggregated
capacity to cache data but need to coordinate for coherence. This
non-uniform communication is an important hardware charac-
teristic, as it can amplify the impact of contention points in the
CC schemes on any large hardware (multi-socket and many-core).
Otherwise, the simulation differs from today’s hardware, since it
assumed low-power and in-order processing cores clocked at 1GHz,
cache hierarchies with only two levels, and cache capacities larger
than today’s caches. Notably, it simulates the DBMS in isolation
without an OS, disregarding overheads and potential side effects
of OS memory management, scheduling etc., omitting essential
aspects of real systems [7, 23] like ours.

Benchmarking Environment: As [27], we evaluate the CC schemes
mentioned before on our multi-socket hardware with the TPC-C
benchmark [24] as implemented in the latest version of DBx10001.
This version of DBx1000 includes the extended set of CC schemes
as mentioned before and bug fixes, beyond the version used in the
1https://github.com/yxymit/DBx1000/tree/b40c09a27d9ab7a4c2222e0ed0736a0cb67b7040

original paper [27]. For running the benchmarks, we use the given
default configuration of DBx1000. This configuration defines the
TPC-C workload as equal mix of New-Order and Payment trans-
actions covering 88% of TPC-C with standard remote warehouse
probabilities (1%2 and 15%). This configuration partitions the TPC-
C database by warehouse (WH) ID for all CC schemes. Based on
this configuration, we specify four warehouses for the high conflict
TPC-C workload and for the low conflict workload we specify 1024
or 1568 warehouses, maintaining the ratio of at most one core per
warehouse as [27].

An interesting first observation was, that the TPC-C implemen-
tation of DBx1000 does not include insert operations, presumably
due to the mentioned limitations of the simulator, e.g., memory
capacity and no OS. In this paper, we first start with the very same
setup, but later we also enable insert operations in the evaluation
after taking a first look at the CC schemes. As minor extension, we
added a locality-aware thread placement strategy to DBx1000 for
all experiments in this paper, which exclusively pins DBMS threads
to a specific core. For scaling the DBMS threads in our experiments,
we use the minimal number of sockets to accommodate the desired
resources, e.g., 2 sockets for 112 threads. Otherwise OS and NUMA
effects would dominate the overall results. Note that as conse-
quence of this thread placement strategy, cores and threads equally
refer to a single execution stream (i.e., a worker) of the DBMS. In
our initial experiments (Sections 3-4), we use up to 1024 cores like
the simulation in [27]. Only after our optimisations, we leverage
the full 1568 cores of our hardware, showing the scalability of our
optimised DBMS in Section 5.

3 A First Look: Simulation vs. Reality
We now report the results of running the DBx1000 prototype di-
rectly on the multi-socket hardware as opposed to a simulation.

3.1 The Plain Results
Figures 2 and 3 display the throughput of TPC-C transactions for 4
warehouses and 1024 warehouses, i.e., high and low conflict OLTP
workloads. On the left of each figure are the original simulation
results [27] and on the right are our results on a real multi-socket
hardware. We first report the plain results. Then we break down
where time is spent in the DBMS to better understand our observa-
tions.

We first look at the results for 4 warehouses as shown in Figure 2.
Overall, it is obvious that the absolute throughput differs due to the
characteristics of the CPUs in the simulation and our hardware, e.g.,
low-power 1 GHz cores versus high-power 2.5 GHz cores, which
can be expected and therefore only the relative performance of
the CC schemes matters. In the following, we now discuss some
similarities but also significant differences.

First, comparing the simulation and the real hardware in Figure 2,
we see that the CC schemes HSTORE, MVCC, and NO WAIT show
similar trends. That is, these CC schemes have a similar thrashing
point in the simulation and the real hardware, i.e., HSTORE at 4 to
8 cores and MVCC as well as NO WAIT at 56 to 64 cores. After the
respective thrashing point, these CC schemes degrade steeper on
the multi-socket hardware, which can be linked to the additional
2Based on a typo, the original paper [27] states 10% instead of 1%

https://github.com/yxymit/DBx1000/tree/b40c09a27d9ab7a4c2222e0ed0736a0cb67b7040
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Figure 2: Throughput of TPC-C high conflict workload (4
WH) in original simulation [27] and on real multi-socket
hardware.
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Figure 3: Throughput of TPC-C low conflict workload (1024
WH) in original simulation [27] and on real multi-socket
hardware.

NUMA effect of the multi-socket hardware appearing beyond 56
cores. For the other CC schemes the results for the simulation and
real hardware differmorewidely, especially the diverging behaviour
of the pessimistic CC schemes sticks out. Considering these pes-
simistic CC schemes, DL DETECT behaves broadly different already
degrading at 8 cores rather than 64 cores andWAIT DIE performs
surprisingly close to NO WAIT. In the Section 3.2, we analyse the
time breakdown of this experiment to explain these results. It re-
veals characteristic behaviour of the individual CC schemes, despite
the diverging throughput in the simulation and the multi-socket
hardware.

Next, we look at the low contention TPC-C workload (1024 ware-
houses) in Figure 3. The results here present fewer similarities of the
many-core simulation and the multi-socket hardware, i.e., only the
slope of theMVCC scheme is similar. Additionally, DL DETECT and
NOWAIT stagnate at high core counts (>224) in the simulation and
on the multi-socket hardware. In contrast, HSTORE performs worse
on the multi-socket hardware than in the simulation. It is slower
than the pessimistic CC schemes and OCC from >112 cores. Also,
OCC andWAIT DIE achieve higher throughput on the multi-socket
hardware, now similar to DL DETECT and NO WAIT. Moreover,
unexpectedly in this low conflict workload, MVCC is significantly
slower than OCC and the pessimistic CC schemes, which is caused
by high overheads of this scheme as we discuss next.

Useful Time usefully executing application logic and operations
on tuples.

Abort Time rolling back and time of wasted useful work due to
abort.

Backoff Time waiting as backoff after abort (and requesting next
transaction to execute).

Ts. Alloc. Time allocating timestamps.
Index Time operating on hash index of tables including latch-

ing.
Wait Time waiting on locks for concurrency control.
Commit Time committing transaction and cleaning up.
CC Mgmt. Time managing concurrency control other than prior

categories, e.g., constructing read set.

Table 3: Time breakdown categories.
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Figure 4: Breakdown of relative time spent for high conflict
(4 WH) TPC-C transactions on multi-socket hardware.

Insight: The initial comparison of concurrency control schemes
on 1000 cores presents only minor similarities between the simula-
tion and our multi-socket hardware with surprising differences in
the behaviour of the CC schemes mandating further analysis.

3.2 A First Time Breakdown
For deeper understanding of the observed behaviour of the CC
schemes, we now break down where time is spent in processing the
TPC-C transactions on the multi-socket hardware. For this purpose,
we apply the breakdown of [27] categorising time as outlined in
Table 3. For each CC scheme, Figures 4 and 5 break down the time
spent relative to the total execution time of the TPC-C benchmark
with a bar for each core count.

The time breakdown of 4 warehouses in Figure 4 neatly shows
the expected effect of conflicting transactions and aborts for in-
creasing core counts under high conflict workload. That is, most
CC schemes result in high proportions of wait, abort, and backoff as
soon as the number of cores exceeds the number of warehouses (>4
cores), yielding nearly no useful work at higher core counts. Only
thewait time ofHSTORE immediately grows at 4 cores concurrently
executing transactions, such that HSTORE appears more sensitive
to conflicts for this workload.
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Figure 5: Breakdown of relative time spent for low conflict
(1024 WH) TPC-C transactions on multi-socket hardware.

Remarkably, textbook behaviour of the specific schemes becomes
visible in the breakdown: Starting with DL DETECT, its wait time
increases with increasing number of concurrent transactions as
expected, following the increasing potential of conflicts between
concurrent transactions. Different from DL DETECT, WAIT DIE
spends more time backing off and aborting due to its characteristic
aborts after a short wait time (small wait proportion). Instead NO
WAIT solely backs off without waiting, spending even more time on
aborted transactions. The optimistic MVCC waits on locks during
validation, such that its break down shows similar wait times like
DL DETECT. Finally, for OCC we can see that the high abort portion
reflects its sensitivity to conflicts while the high commit portion
stems from high costs for cleaning up temporary versions at commit
time.

Having observed this “expected” behaviour of the CC schemes
under high conflict, we now analyse the unexpected behaviour un-
der low conflict (1024 warehouses) as shown in Figure 5. Against the
expectation, most CC schemes spend considerable amount of time
to manage concurrency (black and grey area) such as lock acquisi-
tion (except HSTORE which we discuss later). For these schemes
this results in at most 50% of useful work (red area). Staggeringly,
MVCC which actually should perform well under low conflicting
workloads, spends almost no time with useful work despite the low
conflict in the workload, i.e., <10% useful work from 224 cores. In
fact, the low conflict is visible in the overall little time spent waiting
or aborting. Consequently, the slowdown compared to pessimistic
CC schemes does not stem fromwasted work but from pure internal
overhead in execution of this CC scheme under high core counts.

In contrast, we observe for HSTORE an increasing impact of
timestamp allocation and waiting time. While timestamp alloca-
tion is used by the other schemes as well, the relative overhead for
HSTORE is the highest since lock acquisition in HSTORE is cheap. In
fact, the authors of [27] did analyse different timestamp allocation
methods in their paper but chose atomic increment as a sufficiently
well performing method that is a generally applicable option when
there is no specialised hardware available. However, as we can see
this choice is not optimal for multi-socket hardware. Moreover,
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Figure 6: Throughput of TPC-C with 1024 warehouses for
timestamp allocation with hardware clock.

we attribute the increasing waiting time of HSTORE to its coarse-
grained partition locking to sequentially execute transactions on
each partition. This partition-level locking causes a higher overhead
if more cores are used since this leads to more conflicts between
transactions as shown in prior work [18, 21].

Insight: The analysed CC schemes behave differently on the real
multi-socket hardware than in the simulation of [27]. For the high
conflict workload (4 warehouses), the behaviour on real hardware
and the simulation appears more similar, for which the time break-
down confirms the expected characteristics for each CC scheme.
However, low conflict workload (1024 warehouses) causes an unex-
pectedly high CC management overhead in most CC schemes and
transactions execute only a limited amount of useful work, except
for HSTORE where waiting and timestamp allocation dominate.

4 A Second Look: Hidden Secrets
In this section, we now take a “second look” on the factors leading
to the surprising behaviour of the CC schemes observed in our
initial analysis and discover equally surprising insights.

4.1 Hardware Assistance: The Good?
In a first step, we analyse the benefit of hardware-assisted time-
stamp allocation over using atomic counters for the real multi-
socket hardware. As explained earlier, the atomic increment is gen-
erally applicable but may cause contention, which efficient and
specialised hardware may prevent if available. Fortunately, as al-
ready mentioned in [27], timestamp allocation can also be imple-
mented using a synchronised hardware clock as supported by the
Intel CPUs [14] in our hardware (rdtsc instruction with invariant
tsc CPU feature). Therefore, we can replace the default timestamp
allocation via atomic increment with this hardware clock.

In the following experiment, we analyse the benefit of this
hardware assistance for timestamp allocation. Figure 6 shows the
throughput of the CC schemes for 1024 warehouses with timestamp
allocation based on the hardware clock.

On one hand, HSTORE greatly benefits from the hardware clock
(as expected) achieving peak throughput of ∼ 40M txn/s with an
overall speedup over atomic increment of up to 3x. We now also
include SILO and TICTOC in our results which perform likeHSTORE
except for high core counts as we discuss in the time breakdown
analysis below. On the other hand, the remaining CC schemes (DL
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Figure 7: Breakdown of relative time spent processing TPC-C transactions on small and full schema with 1024 warehouses
using timestamp allocation via hardware clock.

DETECT, WAIT DIE, NOWAIT, MVCC, and OCC) degrade drastically
when using the hardware clock instead of atomic counters. That is,
the pessimistic CC schemes DL DETECT, WAIT DIE, and NO WAIT
perform ∼ 50% slower within a socket (0.51 - 0.55x speedup for ≤56
cores), after which they degrade to 0.01x speedup at 1024 cores (
0.37 - 0.39 M txn/s). Likewise, MVCC is stable (∼1x speedup) up to
56 cores and its speedup drops to 0.1x when exceeding the single
socket. Finally, OCC does not benefit from the hardware clock at
all (0.44 - 0.01x speedup).

Overall, timestamp allocation based on the hardware clock drasti-
cally changes the perspective on the performance of the CC schemes.
Now HSTORE performs best, meeting the initial observations of
[27] (joined by SILO and TICTOC), whereas the pessimistic schemes,
OCC, and MVCC degrade severely.

For better understanding of these diverse effects of the hardware
clock, we again look at the time breakdown shown in Figure 7a
(top row). As expected, HSTORE now spends no significant time
for timestamp allocation anymore (like SILO and TICTOC). Its
waiting time still significantly increases as before. This explains the
slowdown for >448 cores and corroborates earlier descriptions of
HSTORE’s sensitivity to conflicts on the partition level as discussed
in Section 3.2. An interesting observation is the significant change
in the time break down of the other CC schemes. For example,
DL DETECT, WAIT DIE, and NO WAIT show at least double the
time spent for CC Mgmt. and committing/cleaning up (black & grey,
bottom two bars) with a sudden increase after 56 cores. OCC’s
increase of time spent in these categories increases even more
drastically with less than 20% of useful work at any core count. Only
MVCC does not show a significant change in this breakdown, since
its useful time spent was low already.

Profiling these CC schemes reveals contention, that previously
was on atomic counters, now results in higher thrashing of latches,
despite a latch per row and low conflicts in the workload with 1024
warehouses. Notably, our profiling further reveals more interesting
details of the individual CC schemes: The pthread_mutex employed
in DL DETECT, WAIT DIE, NO WAIT, and OCC sharply degrades
due to NUMA sensitivity of hardware transactional memory [4]
used for lock elision and its fallback to robust but costly queuing

synchronisation [9] as well as costly interaction with the scheduler
of the OS.3 In contrast, MVCC uses an embedded flag as spin latch
which is not as sensitive to NUMA but also not robust [6]. Hence,
this type of latch shows a slower but also continuous degrading of
performance.

Insights: Hardware-assisted timestamp allocation via specialised
clocks alleviates contention and leads to better scalability forHSTORE
(as well as SILO and TICTOC). However, while introducing hardware-
assisted clocks also shifts the overhead in the other schemes, it does
not necessarily improve their overall performance as contention
moves and puts pressure on other components (e.g., latches), even
leading to further degradation of the overall performance.

4.2 Data Size: The Bad?
In the context of this surprisingly high overhead, our second look
at the paper [27] brings the following statement to our attention:
“Due to memory constraints [...], we reduced the size of [the] data-
base” [27]. Consequently, we are wondering if the staggering over-
head is potentially caused by absence of useful work to execute
rather than the abundance of overhead in the CC schemes, due
to the reduced data size imposed by limited memory capacity of
the simulator in [27]. Therefore, we revert the benchmark to the
full TPC-C database in the following experiment and report on the
surprising effect of the larger data volume.

Figure 8 shows the throughput for the full schema with 1024
warehouses and speedup in comparison to the small schema based
on the previous experiment (cf. Figure 6). We measure quite diverse
throughput of the CC schemes. Yet, the speedup indicates that
two major effects of the increased data volume appear in the same
clusters as in the previous experiment but with inverse outcome.
The first cluster of HSTORE, SILO, and TICTOC is slower with the
full schema, i.e., 0.2-0.6x, 0.3-0.5x, and 0.2-0.5x, respectively. The
second cluster, consisting of the previously “slower” CC schemes,
improves inversely to the previously described thrashing points.
That is, DL DETECT, WAIT DIE, and NO WAIT have a speedup of

3pthread_mutex is specific to libc and OS as well as configurable.
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Figure 8: Throughput of TPC-C with 1024 warehouses for
small schema size like in the simulation versus full schema
size both executed on multi-socket hardware.

0.7x up to 56 cores, after which they benefit from the full schema
with speedups of 2.4-9.1x, 2.5-8.3x, and 2.0-9.3x, respectively.MVCC
has a speedup of 0.5-0.6x until 56 cores, breaks even (1x) at 112
cores, and then improves with a speedup of 1.2-9.3x. OCC has a
speedup of 0.8 at 1 core and broadly improves with the full schema
with 2.1-14.9x speedup.

The time breakdown in Figure 7b (lower row), presents insights
on the causes. As for the CC schemes in the first cluster,HSTORE has
increased useful work, whereas for SILO and TICTOC CC Mgmt. in-
creases, both indicate increased cost of data movement, as HSTORE
directly accesses tuples and the other two create local temporary
copies in the CC manager. The second cluster also has an increase
of useful work to some extent, presenting less staggering overhead
of CC management at low core counts. Importantly, the sudden
increase of commit for DL DETECT, WAIT DIE, and NO WAIT is
delayed, indicating that latches thrash only from 448 cores (while
previously already from 112 cores). For OCC the time spent on
commit also decreases with the larger data volume, but the increase
of CC Mgmt. due to larger temporary copies still diminishes use-
ful work. Only for MVCC the time break down does not change
significantly.

We attribute these observations to two effects of the larger data
volume: The heavier data movement slows down data-centric opera-
tions (e.g., tuple accesses or temporary copies), but in turn alleviates
pressure on latches preventing thrashing.

Insight: The effect of larger data volumes in the full schema
changes the perspective on the CC schemes again, most notably
on the differences between the individual CC schemes. Moreover,
also the relation of useful work and overhead within each scheme
changes. Both are caused by larger data volume reducing perfor-
mance of data movement, but also alleviating pressure on latches.

4.3 Inserts: Facing Reality!
Since the simulator of [27] had limited memory capacity and ex-
cluded the simulation of important OS features such as memory
management, the TPC-C implementation of DBx1000 did not in-
clude insert operations and for comparability we initially excluded
these as well. For the last experiment in this section, we now com-
plete the picture of concurrency control on real hardware.

Accordingly, Figure 9 shows the throughput of TPC-C transac-
tions including inserts (as well as all before-mentioned changes)
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Figure 9: Throughput of TPC-C including inserts with full
schema size on multi-socket hardware.

for 1024 warehouses. As we can see, the inserts drastically reduce
throughput of all CC schemes and introduce heavy degradation
at the socket boundary (56 cores). Even more interesting, all CC
schemes perform similarly with inserts included in the transac-
tions. Indeed, profiling indicates execution of insert operations are
the hotspot of the TPC-C transactions now, but the causes are or-
thogonal to concurrency control. The two major hotspots are (1)
catalogue lookups to locate tuple fields and (2) memory allocation
for new tuples during insert operations.

Profiling details show that catalogue lookups cause frequent
accesses to L1 and L3 caches. For tuple allocation, profiling details
indicate significant time spent in the memory allocator and for OS
memory management including page faults. These hotspots are
amplified by NUMA in our multi-socket system, since the cata-
logue is centrally allocated and memory management in Linux is
contention- and NUMA-sensitive as well [5]. Consequently, such
impact on performance only becomes visible in its full extent on
large systems like ours.

Insight: Inserts themselves do significantly affect the perfor-
mance of the CC schemes in this benchmark. Yet, in all schemes
performance is now greatly overshadowed by orthogonal hotspots
most notably cache misses of the catalogue and memory allocation
during inserts.

5 A Final Look: Clearing Skies
Finally, we take a last step to provide a more optimal handling of
inserts in DBx1000 to get a clear view on the characteristics of the
CC schemes on large multi-socket hardware. To clear this view,
we remove previously identified obstacles and further optimise
DBx1000 as well as the implementation of the TPC-C transaction
based on state-of-the-art in-memory DBMS for large multi-socket
hardware [13, 17, 18].

Our optimisations address thrashing (cf. Section 4.1) with a queu-
ing latch and exponential backoff [13]. We optimise data movement
(cf. Section 4.2) with reordering and prefetching of tuple and index
accesses, a flat perfect hash index, and NUMA-aware replication
of the read-only relations [18]. Additionally, for the hotspots iden-
tified in Section 4.3, we transform expensive query interpretation
(especially catalogue lookups) into efficient query compilation as
done by state-of-the-art in-memory DBMS [17] and introduce a
thread-local memory allocator that pre-allocates memory, as done
in commercial in-memory databases today [11]. Memory alignment
is also an interesting trade-off for memory management. On one
hand, alignment to cache line boundaries prevents false sharing
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Figure 10: Throughput of TPC-C in original many-core sim-
ulation [27] without full schema & inserts and our opti-
mised implementation with full schema & inserts on multi-
socket hardware.

and may generally be required by some CPUs. On the other hand,
this alignment may amplify memory consumption, as records are
allocated as multiples of cache lines, e.g., 64 bytes. DBx1000 aligns
to 64 bytes and our allocator does so as well now, because false
sharing obliterates performance without alignment. Additionally,
we reduce CC overhead for read-only relations and update the dead-
lock prevention mechanisms to state-of-the-art as recommended
by [13].

5.1 The Final Results
With the above optimisations in place, we are finally able to take a
clear look at concurrency control for OLTP on large multi-socket
hardware. In the following experiment, we repeat our first assess-
ment (cf. Section 3) of the concurrency control schemes under OLTP
workload with high and low conflict. Though, this time we utilise
our optimised implementation and take the full TPC-C schema as
well as inserts in the transactions. Notably, we exercise the whole
1568 cores in this experiment, for which we keep the one-to-one
relation of cores to warehouses for the low conflict workload (1568
warehouses), as the TPC-C workload induces significant conflict
when concurrent transactions exceed the number of warehouses
(cf. Section 3). Accordingly, Figure 10 presents the final throughput
for the high conflict and low conflict TPC-C workload. In addition,
Figure 11 again details the performance of the CC schemes on the
multi-socket hardware with time breakdowns for both workloads.

Starting with throughput of the high conflict workload in Figure
10a (top row), we again observe similar results as reported in our
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Figure 11: Breakdown of relative time spent processing TPC-
C transactions with optimised DBx1000 using full schema
and inserts on multi-socket hardware.

first assessment. The many-core simulation and the multi-socket
hardware results show different but reasonable behaviour due to the
respective hardware characteristics. The only difference is that now
our optimisations further offset throughput on the multi-socket
hardware. Additionally, we now include the advanced CC schemes
SILO and TICTOC whose peak throughput remarkably outperform
the originally covered CC schemes with 4.6 and 5.3M txn/s, respec-
tively. Yet, those two CC schemes similarly degrade at high core
counts converging to the performance of the other CC schemes
from 56 cores (>1 socket).

For the other CC schemes, there are minor similarities of the
individual throughput curves of the CC schemes between the many-
core simulation and the multi-socket hardware. Focusing on the rel-
ative performance of the CC schemes other than SILO and TICTOC,
reveals significant improvement of OCC and decrease of MVCC.
Additionally, the pessimistic schemes converge at high core counts
only degrading at different points and rates. Finally, H-Store still
only performs well for small core counts (≤ 4) and remains slow
beyond. Moreover, considering the time breakdown for the high
conflict TPC-C workload in Figure 11a, we again observe textbook
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behaviour as in the early time breakdown in Section 3.2 with frac-
tions of wait, backoff, and abort characteristic for the individual
CC schemes, though the amount of useful generally improves and
commit as well as CC Mgmt. decrease through our optimisations.

Next, we analyse the low conflict workload using our optimised
implementation. Figure 10b reveals that under this workload all CC
schemes broadly provide scalable performance with fewer differ-
ences as the schemes show in the many-core simulation. That is,
up to two sockets the throughput of all CC schemes steeply grows.
Then the throughput continues to grow linear up to 1344 cores at
a lower growth rate. At the full scale of 1568 cores, the behaviour
of the CC schemes differs. TICTOC, SILO, and MVCC make a steep
jump reaching 197 M txn/s, 159 M txn/s, and 75 M txn/s, respec-
tively. Also, the growth rate of the pessimistic locking schemes
increases but not as much yielding 34 M txn/s for DL DETECT, 32
tnx/s for WAIT DIE, and 36 M txn/s for NO WAIT. OCC stays linear
achieving 39 M txn/s. In contrast, HSTORE degrades from 59 M
txn/s at 1344 cores to 35 M txn/s at 1568 cores.

Now with this clear view, we can make out different characteris-
tics of the CC schemes on the large multi-socket hardware, that
are visible in their throughput as well as in their time breakdown
as shown in Figure 11b. Under high conflict, the schemes SILO and
TICTOC are the clear winners, although they do also not scale to
high core counts (similar to the other schemes). Under low conflict,
HSTORE performs the best before the number of concurrent transac-
tions (cores) equals the number of partitions (warehouses). HSTORE
degrades beyond this point, due to its simple but coarse partition
locking, which is identical to the behaviour in the simulation. In
detail, HSTORE’s sensitivity to conflicts becomes obvious in the
steep increase of wait time in the time breakdown.

Under low conflict, TICTOC follows as second fastest with SILO
close by. Both provide significantly lower throughput than HSTORE
until the tipping point at 1344 cores from which they outperform
HSTORE by a largemargin due to efficient fine-grained coordination,
as indicated by their stable amount of Commit and CC Mgmt. For
the other CC schemes, the view is diverse as their relation changes
with the NUMA distance between the participating cores. After ex-
ceeding 8 sockets (448 cores/2 chassis) the pessimistic schemes fall
behind the advanced optimistic CC schemes (TICTOC & SILO) and
eventually also behind OCC andMVCC. This degrading is unrelated
to conflicts (no wait time) but correlates with increasing NUMA
distances. Consequently, for the low conflict OLTP workload, it
appears that pessimistic locking is beneficial when access latencies
(NUMA effects) are low, whereas the temporary copies of optimistic
CC can hide these latencies, but these temporary copies come at
the cost of additional data movement, slowing down throughput
at close NUMA distance. To this end, HSTORE and TICTOC imple-
ment these two approaches as well, but they are more efficient,
e.g., as HSTORE locks less frequently. Notably, there is no differ-
ence among the pessimistic CC schemes with different mechanisms
against deadlocks, as there is low conflict in the workload, and thus
few deadlocks.

Insight:After spending considerable engineering effort bringing
state-of-the-art in-memory design to DBx1000, we shed new light
on concurrency control on 1000 cores. First, we unveil remarkable

peak throughput of the newer CC schemes, TICTOC and SILO, on
high conflict workload, while also presenting textbook behaviour
of all CC schemes in the time breakdown. Second, we brighten the
grim forecast of concurrency control on 1000 cores for low conflict
workload from the simulation of [27]. In fact, under low conflict all
CC schemes scale nearly linearly to 1568 cores with a maximum of
200 million TPC-C transactions per second.

6 Discussion and Conclusion
In this paper, we analysed in-memory DBMS on today’s large multi-
socket hardware with 1568 cores, revisiting the results of the simu-
lation in [27], which led us to several surprising findings: (1) A first
attempt of running their prototype on today’s multi-socket hard-
ware presented broadly different behaviour of the CC schemes. To
our surprise, the low contention TPC-C workload with at most one
warehouse per thread revealed most concurrency schemes not only
stopped scaling after 200 cores but also were very inefficient spend-
ing not even half of their time on useful work. (2) Based on these
results, we decided to take a second deeper look into the underlying
causes and made several additional discoveries. First, DBx1000 uses
atomic increments to create timestamps in the default setting. This
was a major bottleneck on the multi-socket hardware. Second, the
default benchmark settings of DBx1000 used a TPC-C database
which was significantly reduced in size and did not implement any
inserts in the transactions. Changing these default setting shifted
the picture of our initial assessment completely: while replacing
the atomic counter with a hardware clock removed the timestamp
creation bottleneck, enabling the original database size and insert
operations, however, led to an even darker picture as in our first
look. In this second look, we saw that all CC schemes completely
collapsed when scaling to more than 200 cores, resulting in devas-
tating 0.5 million txn/s when all cores were used. (3) Finally, we
took this challenge and spent significant engineering efforts on
the DBx1000 code base to optimise all components from memory
management over transaction scheduling to locking. This cleared
up the dark skies we faced before and allowed most CC schemes
to perfectly scale, providing up to 200 million txn/s on 1568 cores.
Even more surprisingly, now, the CC schemes behave very similar
with no clear winner.

We speculate that this is due to the fact that most schemes
are now memory-bound, emphasising the need to invest in la-
tency hiding techniques such as interleaving with coroutines [15,
22] as an intriguing direction for future work on scalable concur-
rency control. Having cleared the view on concurrency with this
re-evaluation on large hardware, fundamental optimisations like
hardware-awareness of OLTP architecture [21] or even adaptive
architectures [1] appear exciting for further evaluation of DBMS
on such hardware. Also, now that hardware is available, evaluating
not only broad concurrency but also utilisation of the full memory
capacities is an interesting avenue towards hundred-thousands of
TPC-C warehouses on in-memory DBMS.

So, stay tuned for “Part 2 on The Tale of 1000 Cores” :).
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