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ABSTRACT

In this paper, we propose ScaleStore, a novel distributed storage
engine that exploits DRAM caching, NVMe storage, and RDMA
networking to achieve high performance, cost-efficiency, and scala-
bility at the same time. Using low latency RDMA messages, Scale-
Store implements a transparent memory abstraction that provides
access to the aggregated DRAM memory and NVMe storage of all
nodes. In contrast to existing distributed RDMA designs such as
NAM-DB or FaRM, ScaleStore stores cold data on NVMe SSDs
(flash), lowering the overall hardware cost significantly. The core
of ScaleStore is a distributed caching strategy that dynamically
decides which data to keep in memory (and which on SSDs) based
on the workload. The caching protocol also provides strong consis-
tency in the presence of concurrent data modifications. Our evalua-
tion shows that ScaleStore achieves high performance for various
types of workloads (read/write-dominated, uniform/skewed) even
when the data size is larger than the aggregated memory of all
nodes. We further show that ScaleStore can efficiently handle
dynamic workload changes and supports elasticity.
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1 INTRODUCTION

In-memory DBMSs. Decades of decreasing main memory prices
have led to the era of in-memory DBMSs. This is reflected by
the vast number of academic projects such as MonetDB [8], H-
Store [34], and HyPer [37] as well as commercially-available in-
memory DBMSs such as SAP HANA [24], Oracle Exalytics [26],
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Table 1: Hardware landscape in terms of cost, latency, BW.

Price
[$/TB]

Read Latency
[𝜇s/4 KB]

Bandwidth
[GB/s]

DRAM 5000 0.1 92.0
Flash SSDs 200 78.0 12.5
RDMA (IB EDR 4x) - 5.0 11.2

and Microsoft Hekaton [19]. However, while in-memory DBMSs
are certainly efficient, they also suffer from significant downsides.

Downsides of in-memory DBMSs. An inherent issue of in-
memory DBMSs is that all data must be memory resident. In turn,
this means if data sets grow, larger memory capacities are required.
Unfortunately, DRAM module prices do not increase linearly with
the capacity, for instance, a 64 GB DRAM module is 7 times more
expensive than a 16 GB module [1]. Therefore, scaling data beyond
a certain size results in an “explosion” of the hardware cost. More
importantly, since 2012 main memory prices have started to stag-
nate [27] – while data set sizes are constantly growing. This is why
research proposed two directions to handle very large data sets.

NVMe storage engines. As a first direction, a new class of
storage engines [38, 51] has been presented that can leverage NVMe
SSDs (flash) to store (cold) data. As Table 1 (second row) shows,
the price per terabyte of SSD storage is about 25 times cheaper
than the price of main memory. The key idea behind such high
performance storage engines is to redesign buffer managers to
cause only minimal overhead on modern hardware in case pages
are cached in memory. This is in stark contrast to a classical buffer
manager that suffers from high overhead even if data is cache
resident [28]. Recent papers [38, 51] have shown that when the
entire working set (aka hot set) fits into memory, the performance
of such storage engines is comparable to pure in-memory DBMSs.
Unfortunately, when the working set is considerably larger than the
memory capacities, the system performance significantly degrades.
This is because the latency of SSDs is still at least two orders of
magnitude higher thanDRAM (see Table 1 second row). This latency
cliff mainly affects latency-critical workloads such as OLTP.

In-memory scale-out systems. A second (alternative) direc-
tion to accommodate large data sets is to use scale-out (distributed)
in-memoryDBMS designs on top of fast RDMA-capable networks [7,
20, 33, 43, 53]. The main intuition is to scale in-memory DBMSs
beyond the capacities of a single machine by leveraging the aggre-
gated memory capacity of multiple machines. This avoids the cost
explosion that typically arises in scale-up designs. The main obser-
vation is that scale-out systems execute latency-critical transactions
efficiently via RDMA. In fact, as shown in Table 1 (third row), the
latency of remote memory access using a recent InfiniBand net-
work (EDR 4×) is one order of magnitude lower than NVMe latency.
As a result, systems such as FaRM [20, 21, 56] and NAM-DB [67]
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Figure 1: Overview of ScaleStore using a distributed B-Tree. (a) II The B-tree pages can be spread across local/remotememory

and SSDs. III The caching protocol optimizes how pages are laid out across machines. (b) ScaleStore’s main components.

provide high performance even for latency-sensitive OLTP work-
loads. However, such distributed in-memory DBMS designs still
require that all data must reside in the collective main memory of
the cluster. This causes unnecessarily high hardware costs when
the hot set is smaller than the complete data set.

ScaleStore. Given the two directions — single-node storage en-
gines and in-memory scale-out systems — the question remains if
one can combine the best of both worlds. In this work, we propose a
novel distributed storage engine called ScaleStore (code available
at [15]) that provides low-latency access to the aggregated memory
of all nodes via RDMA while seamlessly integrating SSDs to store
cold data. In contrast to single-node storage engines, this allows
ScaleStore to accommodate the hot set in the aggregated memory
to avoid the latency gap. However, unlike distributed in-memory
systems, ScaleStore evicts cold data to cost-efficient storage.

Challenges.While combining distributed memory with SSDs
appears intuitive, it triggers several non-trivial design questions: (1)
Deciding on the optimal data placement in ScaleStore is challeng-
ing due to the various storage locations (i.e., local memory, SSDs,
remote memory, and remote SSDs). Clearly, a naïve static allocation
scheme could be used in which the storage locations are determined
upfront (in an offline manner) to support a given workload. How-
ever, this prevents efficient support for shifting workloads where
the hot set is changing over time [35] or for elasticity which is a key
requirement for modern scalable DBMSs, especially in the cloud. (2)
Another challenge is to synchronize and coordinate data accesses.
Since data in ScaleStore is distributed across storage devices and
nodes it is non-trivial to achieve consistency efficiently.

Distributed cache protocol. To address these challenges, as a
first core contribution, ScaleStore implements a novel distributed
caching protocol based on RDMA that operates on fixed-size pages.
Our distributed caching protocol provides transparent page access
across machines and storage devices. As such, worker threads can
access all pages as in a non-distributed system. Furthermore, an im-
portant aspect is that the distributed caching protocol dynamically
handles shifts in the workload. For example, if the access pattern
(i.e., which node requires which page) changes, the in-memory
cache is dynamically repopulated. This means that pages are mi-
grated from the cache of one node to another node. To enable high
performance for workloads with high access locality ScaleStore
dynamically caches frequently-accessed pages in DRAM on mul-
tiple nodes simultaneously. Finally, a last important aspect is that
the distributed caching protocol coordinates page accesses across a
cluster of nodes. This ensures a consistent view of the data despite

concurrent modifications even when multiple copies are cached by
several nodes.

Highperformance eviction.Because ScaleStore caches pages
and handles workload shifts, the local DRAM buffer may fill up at
very high rates, and thus unused (cold) pages have to be evicted
efficiently. Existing strategies such as LRU or Second Chance are
either too slow or not accurate enough. ScaleStore, therefore,
employs a novel distributed high performance replacement strat-
egy to identify cold pages and evict them efficiently. Importantly,
our eviction strategy is generally applicable to arbitrary data struc-
tures, rather than being hard-coded to any particular data structure,
which makes ScaleStore a general-purpose storage engine.

Easy-to-use programming abstraction. Despite being a com-
plex system, ScaleStore offers a programming model that allows
developers to implement distributed data structures in a simple
manner. Typically, creating distributed data structures such as dis-
tributed B-trees is a very complex and tedious task. For instance,
it is not uncommon for specialized RDMA data structures to have
thousands of lines of code [73], even with hard-coded caching rules
and no SSD support. The programming model of ScaleStore, in
contrast, hides all this complexity and makes distributed data struc-
ture design as easy as local data structure design.

2 SYSTEM OVERVIEW

In this section, we illustrate the main concept behind our system
using a motivating example and introduce the main components.

2.1 A Motivating Example

In ScaleStore, page access is transparent: any node can access
any page using its page identifier (PID) and the system takes care
of page placement. Consider the B-tree as shown in Figure 1(a)
I, which consists of a root page (P1) and four leaf pages (P2-P5).
Figure 1(a) II illustrates how the pages might initially be distributed
across a cluster of three nodes: Pages P1 and P2 are cached by Node
1, while pages P3, P4, and P5 are not cached and only reside on the
SSDs. P1 and P2 also have a copy on SSDs, but for brevity these
pages are not shown. Note that this placement is only a snapshot,
and during operation, ScaleStore dynamically re-adjusts which
pages are cached based on the workload. For example, as Figure 1(a)
III shows, if Node 0 performs a lookup that involves pages P1 and
P4, it will replicate P1 from the remote main memory of Node
1 and P4 from the remote SSD of Node 1. Note that Node 1 did
not automatically cache P4. At this point, P1 will be cached by



two nodes (Node 0 and Node 1), which is highly beneficial for
frequently-accessed pages like the root of a B-tree.

If Node 2 accesses page P4, then in principle, Node 2 could ei-
ther obtain the page from the SSD of Node 1 or the main memory
cache of Node 0. Given current hardware latencies (see Table 1),
ScaleStore always chooses the latter option. As a consequence,
ScaleStore is effectively capable of combining the main memories
of all nodes into a combined DRAM cache connected through a
low-latency RDMA network. Furthermore, since page placement
is dynamic and workload-driven, other placement scenarios are
possible as well, and ScaleStore will dynamically adapt to those:
For example, if the read-only working set is small and fits into the
cache of each node, all data will eventually be fully replicated on
each node and therefore enabling high performance by avoiding the
network overhead of purely distributed systems. Another possibil-
ity occurs when the workload is partitioned, i.e., each node mainly
works on a different subset of the data. In this situation, over time,
each node will cache specifically its subset and thus exploit locality.
Finally, note that our approach naturally adapts to workload shifts
at runtime.

2.2 Main Components

As Figure 1(b) shows, each ScaleStore node consists of four main
components: (1) Worker Pool, (2) Translation Table, (3) Message
Handler, and (4) Page Provider. In the following, we briefly illustrate
how these components interact at runtime.

Consider again the example from Figure 1(a) III where Node 0
wants to access the root node (page P1) from Node 1. Figure 1(b)
illustrates how the page access is implemented. The first step from
the application perspective is to invoke a worker thread 1○ to
execute an operation on a data structure (i.e., B-Tree lookup). The
worker then consults the local translation table to check if page P1
is already in its cache 2○. If the page is indeed in the local cache,
the page ID of P1 is translated to the memory address of the cached
page and returned to the application. If the page is not in the local
cache, it has to be fetched from a remote node. For example, in
order to request a page from Node 1, Node 0 invokes the distributed
page coherence protocol. For this, a page request 3○ is sent to Node
1 to request page P1. When the message handler 4○ on Node 1
finds that the page is already loaded into the remote memory using
its translation table, the page is 5○ directly transferred to Node 0.
Otherwise, the page is loaded from SSD into the temporary memory
of Node 1 before transferring it to Node 0.

3 DISTRIBUTED PAGE COHERENCE

In this section, we describe our distributed page coherence protocol.

3.1 Protocol Overview

The basic idea of our protocol is inspired by cache coherence pro-
tocols like MESI that are used by multi-core CPUs to provide the
illusion of a single unified main memory despite having multiple
per-core caches and therefore duplicated copies of cache lines.

The MESI protocol. In MESI, each cache line has one of four
eponymous states: (1) Modified (the cache line has been modified),
(2) Exclusive (only a single copy exists), (3) Shared (there are multi-
ple copies of this cache line), and (4) Invalidated (the cache line is

out-dated). The protocol ensures coherence by using appropriate
invalidation messages. For example, if a cache line is in the Shared
state and a core wants to write to it, invalidation messages are sent
to all cores that hold this cache line in Shared state.

Our protocol. In contrast to MESI, to work in a distributed
setting, our protocol has several important differences. Instead of
cache lines (usually 64 bytes), our protocol uses pages (e.g., 4 KB)
as the unit of coherency to amortize network overhead and enable
SSD support. These pages can be fixed in the local cache, which
prevents page invalidation until an ongoing operation is finished.
In a distributed cache coherence system this is required to avoid
that the same page has to be fetched multiple times from a remote
node due to invalidations which could quickly lead to a significant
increase in overall latency. We further ensure robustness and fair-
ness with anticipatory chaining, a technique that orders conflicts
and thus ensures fairness and avoids starvation. Finally, our proto-
col implements sequential consistency, whereas multi-core CPUs
typically implement lower memory consistency guarantees such as
Total Store Order. Our protocol is separated into two distinct paths:
(1) the local hot path and (2) the remote invocation. Figure 2 gives
a high-level overview of the decisions in those paths. With this,
ScaleStore follows the design principle “make the common case
fast” and therefore, the local hot path is an important optimization
to avoid unnecessary network messages when the page is already
in the local page cache.

3.2 Local Hot Path

The local path in our protocol is a fast path that does not involve
any remote messages – all decisions can be made locally. Especially
for frequently-accessed pages, this obviously provides significant
performance benefits. For instance, inner B-Tree pages that are
rarely modified but frequently accessed are very likely to be cached
on multiple nodes and can be accessed without any networking
overhead. In the following, we explain the individual steps of the
local hot path as shown in Figure 2.

Check ownership mode. The first step of every page access is
to check the ownership mode. For this, the page translation table
is used, which translates the page identifier (PID) to cache frames
(similar to buffer frames in buffer managers). Besides the page
data, we store the page latch, eviction information, and ownership
metadata inside a cache frame. The ownership metadata describes
the ownership mode for a page (i.e., what operations are allowed):
(1) node-exclusive or (2) node-shared.

Before a worker thread accesses a page, it checks if the page is in
the correct ownership mode. For example, the page has to be in the
node-exclusive ownership mode for modifications (such as an up-
date). Conversely, multiple nodes can access a page simultaneously
only if the page is in the node-shared ownership mode. Note that
node-exclusive and node-shared ownership regulate accesses on a
node-level basis. That is, if a node owns a page in node-exclusive
mode, then all worker threads can exclusively access this page.

Latch and return page. If the ownership mode is correct, the
second step is that the page has to be latched for the concrete worker
thread that wants to access the page. To efficiently synchronize
worker threads within a node, we provide a hybrid latch [9] that
combines a standard mutex with the option for optimistic access:
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• Exclusive: Acquires cluster-wide exclusive access to a page for
a worker thread. Note that this first requires a transition to the
node-exclusive ownership mode for this page. Once the latch is
acquired the page is fixed, i.e., it cannot be evicted from the local
cache until it is unlatched.

• Shared: Acquires shared access to a page where multiple threads
(and nodes) can access it. The ownership mode for this latch can
be either node-shared or node-exclusive. As before, the page is
fixed in the local cache.

• Optimistic: Allows an optimistic page read without acquiring the
latch. The ownership mode for this latch can be again either
node-shared or node-exclusive. In optimistic mode, the page is
not fixed and can be evicted from the local cache.
While shared and exclusivemodes use a traditional OS-supported

read/write mutex, the optimistic mode sidesteps the mutex. This
avoids cache line invalidations for latch acquisition and is crucial
for making reads scalable on multi-core CPUs. Optimistic mode
relies on a version counter, which is incremented for every page
modification, to detect concurrent page modifications or ownership
changes. If the version has changed (or the page was evicted), the
reader must restart its read operation. If restarts keep happening,
one can easily fall back to the shared latching mode, which will
ensure forward progress.

3.3 Remote Invocation

In cases where the page is not in the local cache, ScaleStore
triggers the remote invocation path. The remote path consists of
several steps as shown in Figure 2 (lower part).

To query the current ownership mode and the location of a
page, we first need to contact the directory node. To avoid a single
directory node from becoming a performance bottleneck, every
node is a directory for some of the pages. This also ensures that the
SSD capacities are equally utilized because pages are only persisted
at the directory nodes. In Figure 1(a), for example, the directory
node of page P3 is Node 0. The directory has full knowledge about
the state of the page such as which other nodes currently cache the
page and in which ownership mode.

Which node is the directory? In our current implementation,
the directory is the node on which the page is initially created at.
During the allocation of the page, a unique page id (PID) is assigned
to it. The directory node id is encoded in the first 8 bits of the PID
to identify the directory node from the page ID. The remaining
56 bits indicate its page slot on the SSD at the directory node. For
instance, 0x010000000000000F encodes node id 1 as the directory,
and this page would be written to slot 15 on the SSD of Node 1.

Base case. Now that we know how to identify the directory
node of a page from its page ID, we can request the page as shown
in Figure 3 (which illustrates the base case). Node 0 – the requester
– sends an ownership request 1○ to the directory. The ownership
request describes to the directory what page is needed and whether
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Figure 3: Base case of the Remote Invocation.

node-exclusive or node-shared ownership is required. In the example
of our B-Tree lookup in Section 2.1, Node 0 needs node-shared
ownership for page P1. The directory then checks the ownership
metadata 2○. This is necessary because conflicts could happen, but
for now, let us assume there is no conflict. Subsequently, the own-
ership metadata in the cache frame is updated 3○ on the directory
node to reflect where the page is located. Finally, an ownership
response 4○ is sent and the page is copied to Node 0 which is then
called a node-shared owner. Note, the node-shared owner stores the
ownership mode in its local cache frame to support the local hot
path as discussed before.

Conflict cases. As mentioned in step 2○ in Figure 3, two types
of conflicts can happen during an ownership request: (1) exclusive
and (2) shared conflict. A conflict in our protocol is always related to
incompatible ownership modes, i.e., a requesting node (Requester)
wants an ownership mode and another node already holds the page
in an incompatible mode as shown below:

Requester wants: Other Node has:
Node-exclusive Node-shared

Node-exclusive exclusive conflict shared conflict
Node-shared exclusive conflict no conflict

In the following, we explain the two conflict cases.
Handling exclusive conflicts. An exclusive conflict occurs if

one node requests a page of which another node is a node-exclusive
owner, as Figure 4 illustrates. Regardless of whether the requester
needs node-exclusive or node-shared ownership, both are incom-
patible with a node-exclusive ownership of another node. The first
three steps are identical to the base case except that in step 2○ the
directory will detect the conflict. Note that the directory does not
necessarily have the up-to-date page content but only the metadata.
In our example, Node 2 owns the page in node-exclusive mode,
which implies that the page has been modified. Therefore, the di-
rectory does not store the old-page content and replies in 4○ with
the conflicting node id. The requester then sends an 5○ ownership
transfer request to Node 2, the current node-exclusive owner of
the page. Node 2 transfers the page with the response 6○ to the
requester. Afterwards, Node 2 7○ removes the page from its cache.
Notably, no acknowledgment message to the directory is required
because we employ a technique called immediate metadata updates
which we will discuss in Section 3.4.

Handling shared conflicts. In shared conflicts, a page that
is in node-shared mode is requested in node-exclusive mode by
another node. To handle this case, the directory node detects the
conflict and sends a list of node-shared owners to the requester. The
requester then chooses one of the node-shared owners (at random)
and sends a transfer ownership request to transfer the page to its
own cache. Afterwards, the requester sends ownership invalidation
requests to all other node-shared owners, which invalidate the
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Figure 4: Exclusive Conflict and its Resolution.

page and ensure that the requester is the node-exclusive owner.
Handling this conflict could seem expensive due to the invalidation
messages, but often there are only a few node-shared owners of
a page. Additionally, invalidation messages are sent in parallel to
multiple nodes via low-latency messaging, as we will explain in
Section 3.5.

3.4 Robustness and Fairness

After discussing the basic conflict resolution, we now describe how
our protocol can efficiently handle conflicting requests coming from
multiple nodes at the same time. For instance, when the B-Tree root
is split or contended pages are accessed, multiple nodes compete for
the same page. Such scenarios are not uncommon, and the challenge
is to ensure fairness, avoid starvation, and keep latencies low.
3.4.1 Busy Polling. The naïve approach for handling multiple
conflicts is to let the nodes compete through busy polling on the
directory node. As illustrated in Figure 5(a), if three nodes (𝑁 0, 𝑁 1,
and 𝑁2) want to access a page in exclusive mode, all three nodes
send ownership requests to the directory (𝐷). In the example, 𝐷
responds with the current exclusive owner (𝑁 3) to all three nodes,
which in turn send ownership transfer requests to 𝑁3. However,
only the first of the three requests can succeed (exclusive mode).
Therefore, the page is sent to 𝑁 0 and 𝐷 is informed, which triggers
a metadata update to reflect that 𝑁0 is the new exclusive owner.
The other requests fail, i.e., 𝑁1 and 𝑁2 back off and contact the
directory again to get the new owner (𝑁 0). The above sequence is
then repeated until all requesters finally get the page. As Figure 5(a)
shows, this approach suffers from two issues: (1) many unnecessary
messages are sent (highlighted in red), and (2) starvation can happen
since a node might always lose to another concurrent request.
3.4.2 FIFO-Queue. To avoid flooding the system with repeated
requests for the same page, the requests can instead be queued at
the directory as discussed in [10]. The requests are then served one
at a time as determined by the queue. Figure 5(b) illustrates this
approach in the same setting as before. The second request (𝑁 1) is
dequeued and continued after the previous request of𝑁 0 succeeded,
i.e., the metadata has been updated. The FIFO-queue might give a
false impression that requests are ordered and fairness is achieved.
However, for efficiency reasons, local workers can bypass the queue
as discussed before (to enable the hot path). Therefore, as soon as
the page can be accessed, the local worker threads can “steal” the
page from the remote requester. For instance, in Figure 5(b), if the
directory node also accesses the same page, it can intercept the page
requests of the other nodes 𝑁0 − 𝑁3 leading to an unfair access
pattern. On the other hand, enqueueing the local workers also in
the FIFO-queue may solve this problem but incurs high overhead
on the hot path which is prohibitively expensive.

3.4.3 Anticipatory Chaining. To provide high efficiency and
fairness at the same time, we propose anticipatory chaining. In this
approach, a requester anticipates where the page will be just before
its own turn (i.e., it anticipates its logical predecessor).

Immediate metadata updates. The key idea is that the meta-
data on the directory is directly updated once a page is requested.
That way, nodes that request a page receive the anticipated page
owner who will hold the page before them.

Figure 5(c) shows the general flow of our approach. Here, we see
that the directory is updated immediately when the first request
from 𝑁0 arrives at 𝐷 . Moreover, when the second request from
𝑁 1 arrives, 𝐷 directly forwards 𝑁 1 to the predecessor 𝑁 0 (i.e., the
anticipated owner who holds the page before) even though the
page might not have been physically moved yet. The same holds
for the third requester 𝑁2 which is directed to 𝑁1. An important
aspect of our protocol is that the page is moved strictly according
to the order of the requests, and the directory cannot interfere;
instead, the directory is treated like any other node, and thus we
guarantee fairness. For instance, if 𝐷 wants to access the page after
the ownership request from 𝑁3, it is guaranteed that 𝑁3 receives
the page before the directory. Overall, the approach is thus in stark
contrast to the previous approaches (busy polling and FIFO-queue),
which update the metadata only once the page is actually trans-
ferred to the new owner. To achieve this, the other approaches send
acknowledgment messages once the page is transferred. Our ap-
proach saves this coordination step entirely. Additionally, because
we eschew the FIFO-queue altogether, the local hot path is very
efficient without sacrificing fairness.

Owner stability. While immediate metadata updates help to
achieve fairness, they can become very costly if the page is not
where the requester expects it to be. For instance, if 𝑁 1 expects the
page at the predecessor 𝑁 0 but 𝑁 0 evicts the page in the meantime,
𝑁1 would need to retreat to 𝐷 to get the new page location. This
would require additional communication, which results in increased
latencies not only for 𝑁1 but for all chained requests. Therefore,
an important aspect that anticipatory chaining provides is what we
call owner stability; i.e., it guarantees that the page will be at the
predecessor node where the requester expects it to be.

To decide when owner stability must be guaranteed we track a
conflict epoch per page. This conflict epoch is incremented whenever
the directory detects a conflict. Every node that requests a page
remembers the current conflict epoch for this page. Let us consider
the following example, initially, the conflict epoch for the page,
which is requested by 𝑁0 is 5. Therefore, when 𝑁0 requests the
page exclusively it remembers the conflict epoch at that time, i.e.,
5. When 𝑁1 requests the page in exclusive mode, 𝐷 detects the
exclusive conflict, increments the conflict epoch to 6, and responds
with the current exclusive owner (𝑁0). If 𝑁0 then tries to evict
the page, an eviction request is sent to 𝐷 with the conflict epoch 5.
𝐷 can thus detect that the current conflict epoch does not match
the epoch from the eviction request. When such a mismatch is
detected, owner stability must be guaranteed. Therefore, in this
case, 𝐷 declines the eviction request and 𝑁 0 simply waits until the
ownership transfer request from 𝑁1 invalidates the page as part
of the exclusive conflict resolution. This guarantees that when 𝑁 1
expects 𝑁 0 to be the owner, this assumption holds true.
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Figure 5: Handling multiple conflicts: Nodes N0, N1, and N2 request a Page in Exclusive (X-)Mode from Directory D.

Deadlock avoidance. Lastly, our protocol also ensures that no
deadlocks occur. For example, one scenario which may lead to a
deadlock is if a node upgrades from shared to exclusive ownership
for a page. In this example, one node might want to copy the page
from the upgrading node, but the upgrading node wants to invali-
date the copying node at the same time (due to the exclusive conflict
resolution). Therefore, both nodes are waiting for each other to
finish and unlatch the page. In ScaleStore, we resolve such scenar-
ios using the conflict epoch mentioned before. In the example, the
upgrading node has the higher conflict epoch, and thus we detect
the potential deadlock and the node with the lower conflict epoch
needs to back off. Other edge cases, which we cannot describe due
to space constraints, can be solved using conflict epochs as well.

Micro-benchmark. To show the effect of anticipatory chaining
we execute a micro-benchmark with five nodes and one worker
thread per node. In the micro-benchmark, workers either access
multiple pages uniformly (uncontended) or all workers access a
single page (contended). Figure 6 compares anticipatory chaining
and the FIFO-queue approach. Anticipatory chaining performs gen-
erally better even in the uncontended scenario because fewer mes-
sages are sent. Moreover, in the contended scenario, anticipatory
chaining achieves a 30% higher system throughput. This is because
we achieve fairness between all participating nodes. In contrast,
the FIFO approach has an unfair access schedule for the directory
has two times higher throughput than the remote nodes. That is
because the directory worker intercepts the remote requests as
described in Section 3.4.2. This essentially leads to starvation and
performance degradation, which is also reflected in the latency
plot on the right-hand-side. Furthermore, we can observe that the
latencies for anticipatory chaining are lower and the variance is
significantly smaller compared to the FIFO-queue approach.

3.5 Low-Latency RDMA Messaging

We use Remote Direct Memory Access (RDMA) for all inter-node
communication – including protocol messages and page transmis-
sions. RDMA offers low latency and high bandwidth between nodes
but requires careful engineering to achieve its potential. A number
of RDMA implementations are available – most notably InfiniBand
and RDMA over Converged Ethernet (RoCE) [62]. We use Infini-
Band and Reliable Connection (RC), which guarantees that packets
are delivered in order and without any loss.

RDMA implementations provide several communication prim-
itives (so-called verbs) that can be categorized into the following
two classes: (1) One-sided verbs (read/write) provide remote mem-
ory access semantics, in which one node accesses a remote node’s
memory over the network. The CPU of the remote node is not
actively involved in the data transfer and thus is often used to save
CPU cycles on the receiver. (2) Two-sided verbs (send/receive), in
contrast, provide channel semantics. In order to transfer data be-
tween two nodes, the receiving node first needs to publish a receive
request; thus the remote CPU is actively involved.

Can we access pages via one-sided verbs directly? There
are several systems (e.g., FaRM [20] or NAM-DB [67]) that use
one-sided verbs to read or even write remote data directly. This
often requires careful engineering to keep data consistent when
multiple updates are applied concurrently. For instance, NAM-DB
uses RDMA atomic fetch-and-add operations to lock and unlock
remote objects. This operation allows one to atomically modify
8 byte values from remote memory. Unfortunately, compared to
CPU atomics, the network atomics are very slow and even affect
other non-atomic RDMA operations [32].

An even larger problem is that RDMA atomics and CPU atomics
are not compatible [4, 32, 66]. While RDMA atomics work reason-
ably well in NAM-DB, which has been designed with decoupled
storage and compute in mind, our design provides fast local ac-
cesses, which requires synchronization between remote and local
accesses. The only option would be to use RDMA atomic operations
for local accesses as well. However, this incurs a latency penalty in
the order of 1 𝜇s, making local accesses slow. Consequently, Scale-
Store relies on remote procedure calls (RPC) for most operations.
We exploit one-sided RDMA to (1) implement efficient RPC-based
message passing and (2) transfer pages between nodes.

One-sided RPC. Using one-sided RDMA to build an RPC frame-
work is very common [3, 20, 25, 59, 72]. In ScaleStore, we use
a mailbox system very similar to the one from L5 [25]. In L5 ev-
ery incoming message is written to a pre-specified memory area.
This area is called the mailbox and incoming requests are detected
when they are written to this region. To reduce the number of con-
nections in ScaleStore, every worker is connected to a message
handler on every remote node. The message handler provides a
private mailbox for every worker which is continuously monitored
to detect incoming requests. When a new request arrives, the mes-
sage handler processes this request and replies to the worker’s
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thread-local mailboxes. In ScaleStore all messages are cache-line
size (64 byte) which makes this design very efficient as we do not
need to handle variable-length messages. To avoid that the message
handler becomes the bottleneck, we carefully optimized our design.
For instance, we offload conflict resolution as seen in Section 3 to
the worker threads of the requester instead of doing this inside the
directory message handler. More specifically, the workers on the
requester side implement the logic for conflict resolution. We also
tried to resolve conflicts at the directory, however, it turned out
that this impacts the overall performance negatively.

Page transfer using RDMA writes. The ultimate objective of
our protocol is to transfer a page to the local cache. For the page
transfer itself, we analyzed two possible strategies, one using one-
sided reads and another using one-sided writes: (1) For one-sided
reads, the message handler responds with a remote memory pointer
to the page. The worker then reads (RDMA read) the page into its
local cache. The benefit is that with one-sided reads the CPU of the
remote message handler is not involved and that the page transfers
are spread across all workers, i.e., threads. (2) The message handler
directly writes the page to the cache of the worker.

Both strategies provide similar performance for the page transfer.
However, we decided to use the second one for two reasons: First,
themessage handler can efficiently transfer pages in the background
with RDMA since RDMA writes can be executed asynchronously.
Second, the message handler can detect when a page transfer has
been completed and immediately unlatch the page. In the first
strategy, the worker however needs to send an additional message
to indicate that the page transfer has finished.

Interestingly, one would assume that a single message from the
worker would be enough, i.e., half roundtrip. However, due to the
mailbox design, the message handler also needs to acknowledge this
message. Otherwise, the previous message from the same worker
could be overwritten before the message handler actually processes
the first message and only sees the second message. All in all, the
second strategy saves a full roundtrip.

4 HIGH PERFORMANCE PAGE EVICTION

Modern RDMA networks are fast – which means that new pages
may be added to the caches at very high rates. To avoid the overall
performance from being throttled due to the lack of free pages,
ScaleStore needs to evict cold pages quickly while making sure
that hot pages stay in the cache. To achieve these goals, we sepa-
rated our eviction process into two components: (1) a low-overhead
strategy to track page accesses, and (2) a dedicated background
thread – the page provider – which utilizes the access information

to actually evict pages. This separation of concerns allows worker
threads to focus solely on query processing while the page provider
handles the eviction in the background.

4.1 Epoch-Based LRU Approximation

Downsides of existing strategies. To distinguish between hot
and cold pages, the access pattern has to be tracked in some way. A
well-known eviction strategy is Least Recently Used (LRU), which
orders pages based on their access recency by maintaining an LRU-
list. Cold pages are stored at the end of the list while hot pages are
at the front, and thus one can reliably classify cold pages. While
LRU would evict the right pages, maintaining an LRU list incurs
high overhead for every page access and can easily become a scal-
ability bottleneck in multi-core systems. An LRU-approximation
such as Second Chance (or Clock) may be employed to avoid this
overhead. Unfortunately, Second Chance only classifies hot pages
well (since they are typically accessed very often), but it often evicts
warm pages instead of cold pages. Evicting warm pages may lead
to a significant slowdown in ScaleStore because pages that are
required need to be read from remote memory or SSD, or even
worse, pages may bounce between nodes. To identify cold pages
more reliably, we need a more fine-grained distinction between the
degree of hotness without incurring the overhead of LRU.

Epoch-based LRU approximation. The basic idea of our LRU
approximation is to use a periodically-growing global epoch counter.
This global epoch counter is used to track the access time for each
page. When accessing a page the current epoch is determined from
the global epoch counter and stored in the cache frame. This con-
ceptually clusters pages that are similarly cold, warm, or hot and
thus creates equivalency classes. In other words, some pages may
share the same last accessed epoch and hence are treated equally
by the eviction strategy. For instance, the B-tree root was likely
accessed in the current epoch, whereas some leaf pages might have
been accessed in an earlier epoch. This approach significantly re-
duces the cost to track access information because the global epoch
is rarely incremented and the check if a page has been accessed in
the current epoch is a mere if-statement:

if(gEpoch > frame.lastEpoch) // if avoids unnecessary

frame.lastEpoch = gEpoch; // cache -line invalidations

Compared to LRU, our approximation results in much higher perfor-
mance (and multi-core scalability) while still accumulating enough
access history to identify cold pages.

4.2 Page Provider

The main goal of the page provider is to maintain a sufficient num-
ber of free cache frames per node even under workload changes.

Sampling-based approach tofind cold pages.With our epoch-
based LRU approximation, the workers track access information
efficiently, but what is left to discuss is how the page provider uti-
lizes this information to find cold pages. To identify cold pages, we
apply a sampling-based approach that iterates over the translation
table (thus randomized). We sample 𝑁 pages, sort them and deter-
mine a configurable epoch eviction threshold, e.g., 10% smallest
epochs from the sample. Based on this epoch eviction threshold,
pages are evicted from the cache. The sampling phase is repeated



when the epoch changes or if the rate at which free pages are
needed cannot be satisfied.

Evicting pages. When the page provider evicts a page, it is
important to know whether it is dirty (modified) or not. As we
know from Section 3, only the directory has full knowledge about
the state of the page and, inter alia, if it is dirty. Therefore, there
are two cases when the page provider evicts a page: (1) the evicting
node is the directory, (2) or not. When the current ScaleStore node
is the directory, it knows if the page is dirty. Typically, dirty pages
are persisted to SSD, but when the page is replicated on other nodes,
the directory can evict the page immediately. When the current
ScaleStore node is not the directory of the selected page, we need
to inform the (remote) directory node: An eviction request is sent to
the directory, which then latches the page exclusively and checks if
there are ongoing concurrent page requests with the conflict epoch.
In the case of a concurrent page request, the eviction process for
this page is deferred to maintain the owner stability mentioned in
Section 3.4.3. When the directory discovers that the page is dirty, it
copies the page to its cache and then eventually evicts it to SSD.

4.3 RDMA and NVMe Optimizations

The page providers communicate via RDMA messages with each
other. To achieve high performance, we use the same setup as
in the message handler, except that every page provider has a
private mailbox on the remote page provider to ensure efficient
communication. This allows one page provider to contact the page
provider of the directory node directly.

RDMA optimizations. In contrast to the protocol messages for
which low latency was required, we now optimize for high through-
put. Therefore, we batch eviction candidates and send the batch to
the directory. A batch has up to 100 pages that are all managed by
the same directory. The batches are filled opportunistically in that
the page provider tries to fill the batch, but if it does not find enough
pages the batch is sent out earlier. Batching reduces the number of
messages drastically and additionally enables another important
optimization: For every page in a batch, the page provider on the
directory checks if the page is dirty. If that is indeed the case, then
the page must be persisted, i.e., first copied to the local cache of
the directory. To optimize this copy request, we (1) use one-sided
reads to directly copy the message from the remote node back to
the directory node, and (2) we link multiple RDMA reads together.
Instead of registering every single RDMA read with the NIC, we
register a linked list of RDMA reads once. With that technique,
we save precious CPU cycles because every operation which is
explicitly registered with the NIC costs CPU cycles and the NIC
can be better utilized (see doorbell batching in [32]).

NVMe optimizations. We use libaio, the asynchronous I/O
API of the Linux Kernel, to saturate the bandwidth of high-speed
NVMe SSDs when evicting pages to SSDs. To avoid OS caching
effects, we open the database file with O_DIRECT.

5 PROGRAMMING ABSTRACTION

Designing and implementing efficient and scalable distributed data
structures is a difficult task. Our abstraction allows programmers to
port single-node data structures with minimal changes and ensures
that all operations to the same page are sequentially ordered.

5.1 Interface

The key abstraction that ScaleStore’s interface offers for applica-
tion developers are different latch guards.

Latch guards for page access. In ScaleStore, we introduce
latch guards that wrap around page accesses in a way that distribu-
tion is fully transparent and sequential consistency is guaranteed.
As such, page guards act as a proxy for the translation from PID to
the memory address and the acquisition of the correct ownership
and latch modes. For each latch mode, we provide a guard:

• ExclusiveGuard(PID): Latches the desired page in exclusive
mode and ensures that the page is in node-exclusive ownership.

• SharedGuard(PID): Latches the desired page in shared mode and
ensures that the page is in node-exclusive or node-shared owner-
ship mode (as both are compatible with reads, see Section 3).

• OptimisticGuard(PID): Latches the desired page in optimistic
mode, i.e., saves the version, and ensures the same ownership
modes as the SharedGuard(PID) guard. Due to the optimistic
nature a programmer needs to ensure that no concurrent changes
occurred. Therefore, this guard provides a hasChanged method
which indicates if a restart is necessary.

We further provide update and downgrade guards, e.g., an existing
SharedGuard can be passed to a new ExclusiveGuard in order to
upgrade from shared to exclusive. All guards have in common that
they provide a data method to conveniently access the underly-
ing page and the object encapsulated in that page, e.g., a B-Tree
node. Moreover, with the destruction of the guards, the pages are
unlatched.

5.2 Example: B-Tree Lookup

We now explain how the abstractions are applied in practice to
develop the lookup operation in a distributed B-tree. In total, our B-
tree code has only about 900 lines and thus is comparable to a single-
node implementation. More importantly, the implementation is as
easy as for a non-distributed B-tree. In our evaluation in Section 6
we use this distributed B-Tree implementation. The abbreviated
C++ lookup code looks as follows:
0 bool lookup(KeyType key , ValueType& returnValue) {

1 restart:

2 OptimisticGuard g_parent(catalogPID); // get catalog

3 // get rootPID from catalog ...

4 OptimisticGuard g_node(rootPID);

5 if (g_parent.hasChanged ()) goto restart;

6 auto node = g_node.data <NodeBase >();

7 if (g_node.hasChanged ()) goto restart;

8 while (node ->type.isInner ()) { // traverse inner nodes

9 auto& inner = reinterpret_cast <Inner&>(node);

10 if (g_parent.hasChanged ()) goto restart;

11 PID nextPid = inner.children[inner.lowerBound(key)];

12 if (g_node.hasChanged ()) goto restart;

13 g_parent = std::move(g_node); // node becomes parent

14 g_node = OptimisticGuard(nextPid);

15 node = g_node.data <NodeBase >(0); // get next node

16 if (g_node.hasChanged ()) goto restart;

17 }

18 auto& leaf = reinterpret_cast <Leaf&>(node);

19 SharedGuard sg_node(std::move(g_node));

20 // leaf latched; search key and return it ...

21 }



Synchronization is done using optimistic lock coupling [39, 40],
and consequently we traverse pages using two optimistic guards:
For the parent page g_parent (Line 2) and g_node for the current
page (Line 4). The root node is stored in a catalog page, which
is buffer-managed the same way as the B-tree itself. After every
optimistic page access (Lines 5, 7, 10, 16), we validate whether that
node was modified concurrently and restart if it was. Lines 8-17
traverse the inner nodes, at each level replacing the parent with the
current node. Once we arrive at the leaf page (Line 18), we upgrade
its optimistic guard to a shared guard.

Other data structures. As long as data is stored on fixed-size
pages, the programming interface can be used to implement arbi-
trary data structures, e.g., hash table, barrier, or columnar storage.

6 EVALUATION

In this section, we investigate the performance and scalability of
ScaleStore (available at [15]) and compare it with other systems.

6.1 Experimental Setup

We conducted our experiments on a 5-node cluster running Ubuntu
18.04.1 LTS, with Linux 4.15.0 kernel. Each node is equipped with
two Intel(R) Xeon(R) Gold 5120 CPUs (14 cores), 512 GB main-
memory split between both sockets, and four Samsung SSD 980 Pro
M.2 1 TB SSDs connected via PCIe by one ASRock Hyper Quad M.2
PCIe card. We use the Linux’ md software RAID 0 implementation
and use direct block device access. The nodes are connected with
an InfiniBand network using one Mellanox ConnectX-5 MT27800
NICs (InfiniBand EDR 4x, 100 Gbps) per node.

When not noted otherwise, we configured ScaleStore as fol-
lows: Every node has a 150 GB in-memory cache, and we use 4 KB
pages. We use 20 worker, 4 message handler, and 2 page provider
threads (pinned to NUMA 0). We use an optimistically-latched B-
Tree implemented on top of ScaleStore using the programming
abstractions from Section 5. In all experiments, the benchmark
drivers are implemented in C++ and compiled together with Scale-
Store into one binary.

Workloads. We use YCSB, a widely-used OLTP-style bench-
mark [17]. For all experiments, the key-value pairs use 8 byte keys
and the values are randomly generated strings of 128 bytes. We use
the following workloads: 100% Reads, 95% Reads & 5% Writes, 50%
Reads & 50% Writes, and 5% Reads & 95% Writes. Reads are point
lookups and writes are point updates. While the default distribution
is uniform for most experiments, we also evaluate skewed work-
loads with a C++ Zipf generator [16]. Furthermore, the number of
clients is defined by the number of worker threads, i.e., 20 clients per
node. We execute one operation on a single client until completion,
i.e., we do not batch operations nor execute them asynchronously.
We only limit the throughput to achieve varying target throughput
in our latency experiment in Section 6.7.3. We used a 30 second
warm-up phase to measure the steady-state performance followed
by three experiment phases of 30 seconds each. When not noted
otherwise, we report the average system throughput, i.e., the ac-
cumulated average performance of every node. Finally, we use a
distributed B-Tree which is implemented on top of ScaleStore for
serving all operations.

O
u
t-
o
f-
M

e
m

o
ry

In
-M

e
m

o
ry

partitioned

random

O
u
t-
o
f-
M

e
m

o
ry

In
-M

e
m

o
ry

partitioned

random

O
u
t-
o
f-
M

e
m

o
ry

In
-M

e
m

o
ry

partitioned

random

O
u
t-
o
f-
M

e
m

o
ry

In
-M

e
m

o
ry

partitioned

random

100% R 95% R, 5% W 50% R, 50% W 5% R, 95% W

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
0

20M

40M

60M

Number Nodes

Y
C

S
B

 [
o
p
s
/s

e
c
]

Figure 7: YCSB scale-out performance. Fixed 280GB data set.

6.2 Scale-Out

We first conduct a scale-out experiment with the different YCSB
workloads where we scale from 1 to 5 nodes and keep the data set
size, i.e., hot set, constant at 280 GB. Hence, we show the different
scenarios ScaleStore is designed for: if only one node is used, the
data does not fit in the cache (150 GB). From 2 nodes on, however,
the data can be fully cached. Furthermore, we use two access pat-
terns: (1) a partitionable workload where nodes only cover distinct
key ranges (and thus only parts of the data need to be cached per
node) and a (2) random workload where workers access the full
key range. This random access pattern is certainly extreme since all
data is requested by all nodes. For that access pattern, the data set
is too large that it can be fully cached at each node and therefore
the performance is bound by the network latency.

Figure 7 shows the results of the experiment. When the work-
load is partitionable, ScaleStore achieves its peak performance
with 5 nodes of up to 50𝑀 ops/sec in the read-only workload and
20𝑀 ops/sec in the update heavy workload. When the accesses
are randomly spread across the cluster ScaleStore still scales and
achieves around 15𝑀 ops/sec for read-only and 8𝑀 ops/sec for the
update heavy workload. An interesting finding is that the perfor-
mance for the update heavy workload (95% writes) is strictly bound
by network latency. In fact, this is already the case for the 50%
writes workload, which is why both workloads have similar per-
formance. However, the relative performance difference between
read-only and more write-heavy workloads can be observed in both
access patterns partitioned and random. For random accesses it is
slightly higher due to the average cache utilization, i.e., more cache
misses. With 5 nodes the average cache utilization in the update
heavy workload is just 35.1% compared to 98.7% in the read-only
workload which implies that pages are frequently invalidated.

When looking at the speedup between single-node performance
of 800𝐾 ops/sec and 5 nodes we can observe that this is an increase
between 10 and 60 times. This shows that when the hot set out-
grows the memory, the performance can be considerably increased
when scaling-out to avoid the latency cliff of SSDs.

Ablation study.To better understand how ScaleStore achieves
its performance, we now dissect how each optimization affects
the performance of ScaleStore. For the experiment, we use the
random read-only performance with 5 nodes from Figure 7. First,
we disable all optimizations and then enable them step-by-step.
The baseline system implements the high-level ideas of the pro-
tocol without any RDMA optimizations, a classical queue-based
LRU-eviction strategy, a traditional single latched translation table,
and a pessimistic lock-coupled B-Tree. The baseline system only
achieves 1𝑀 ops/sec which already increases to around 3𝑀 when
enabling the RDMA and message handler optimizations. Interest-
ingly, already under this load, the standard translation table became
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Figure 8: Data scalability with varying skew.

a bottleneck due to the cache-line invalidations with a single reader-
writer latch. Therefore, we designed our own optimistically-latched
translation table which increased performance to 8𝑀 ops/sec. We
resolved the next bottleneck, LRU-eviction, with our epoch-based
LRU-approximation to increase performance to around 12𝑀 op-
s/sec. We finally partitioned our translation table to remove the
single latch when inserting and deleting pages and used the B-Tree
implementation as shown in Section 5 to achieve the final perfor-
mance of around 15𝑀 ops/sec. All in all, to build a high performance
distributed storage system many bottlenecks needed to be resolved
before efficiently leveraging RDMA.

6.3 Data Scalability

Let us now focus on data scalability. We use all 5 nodes and analyze
the read-only performance when increasing the YCSB data set
size from 75 GB to 7.5 TB. Furthermore, we examine the effect
of varying degrees of locality (skew). The results are shown in
Figure 8. Overall, the results demonstrate that with ScaleStore
we can gracefully bridge the latency cliff when data spills out from
the local to aggregated cluster memory and then to SSDs.

We now look in more depth at the uniform (random) access
pattern. What we can see is that with a data size of 150 GB and
smaller, the performance is at its peak because the data set can
be fully cached on all nodes. When increasing the data size, the
performance degrades as expected. If the data does not fit into the
local caches, pages need to be fetched from remote nodes (either
from remote memory or SSDs) which increases page access latency
as shown in the following table:

Median 99.9th Percentile Data size Storage

1.7 𝜇s 3.0 𝜇s 75 GB in-memory
12.1 𝜇s 30.6 𝜇s 350 GB aggregated memory
79.3 𝜇s 178.8 𝜇s 7500 TB out-of-memory

Finally, ScaleStore benefits tremendously from locality in the
access pattern as shown in Figure 8. This is because the hot path of
our protocol can be exploited more frequently and our epoch-based
eviction can reliably find cold pages. We see that even with a low
skew of 1.2, ScaleStore achieves around 22𝑀 ops/sec with a data
set size of 7.5 TB. The more locality the higher the performance
resulting in around 85𝑀 ops/sec with 1.4 skew and 7.5 TB data size.

6.4 ScaleStore vs. GAM

Closest to the functionality of ScaleStore is GAM [10] (available
at [12]), which is a state-of-the-art Distributed Shared Memory
system using an RDMA-based cache coherence protocol. Different
from ScaleStore, GAM is a pure in-memory system that provides
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Figure 9: In-memory performance with workload shift.

a unified address space across a cluster of nodes but it does not pro-
vide the possibility to evict data to SSDs. Unfortunately, we needed
to reduce the total data set size to 30 GB since GAM’s hash-table per-
forms suboptimally with larger data sets. Furthermore, we split the
evaluation in a single-node scale-up and a single-thread scale-out
experiment. We did not use a multi-threaded scale-out experiment
as before, since GAM did not work in this setup even after thorough
investigations (possible reasons are the different Mellanox drivers
and compiler versions). The results of the experiment are shown in
the following table:

100% Reads 50% Reads/Writes
Configuration ScaleStore GAM ScaleStore GAM

Scale-up
(1 Node)

1 Thread 712K 558K 690K 534K
20 Threads 12,465K 2,654K 11,566K 2,752K

Scale-out
(1 Thread)

2 Nodes 1,449K 513K 396K 250K
4 Nodes 3,075K 850K 625K 546K

When looking at the results, we can observe that ScaleStore
outperforms GAM in all workloads, most notably is ScaleStore’s
performance with 20 threads. One important aspect is that GAM
uses a slightly modified YCSB runner with a hard-coded value for
updates instead of randomly generating 128-byte values; thus, we
use the same setup (see here).

6.5 Workload Change

Next, we show ScaleStore’s ability to adapt to changing access
patterns. Therefore, we partition the data uniformly across our
5-node cluster, such that every partition is 120 GB.

Initially, every node accesses only data from its local partition
which results in a situation where the partition can be kept in the
local cache. Then, in regular intervals, we reassign the partitions.
For instance, we reassign Node 0 to access data in the partition of
Node 1 instead of accessing its local data. This procedure is repeated
multiple times to show that ScaleStore can reliably handle work-
load changes. While this workload may not be realistic, it shows
the extreme case in which the cache needs to be re-filled completely
while the eviction strategy handles this sudden workload shift.

The results are shown in Figure 9 for the YCSB read-only and
mixed workload. As we can see, ScaleStore recovers extremely
fast already after a couple of seconds to the baseline performance
of 50𝑀 respectively 28𝑀 ops/sec.

6.6 Elasticity

In the previous section, we showed how our protocol handles work-
load changes but with a fixed cluster size. In the following, we
evaluate the elasticity in a decoupled storage and compute archi-
tecture which is typically used by cloud DBMSs today. We use two

https://github.com/ooibc88/gam/blob/456b3f8c15f3052a19c69cc585318e4c61e592b5/dht/kvbench.cc#L257
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Figure 10: Elasticity in a decoupled architecture.
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Figure 11: Performance comparison on a single node system.

storage nodes that accommodate a 250 GB data set. To show the
elasticity, we scale the number of compute nodes at runtime. Every
compute node only has 10 GB of cache to avoid that most data is
replicated to the compute layer. We start with a single compute
node and add another compute node every 30 seconds until we
reach three nodes, after which we disable them one by one again.
In Figure 10 we can see that ScaleStore leverages the additional
compute resources and that performance scales. Overall, the adap-
tion happens in a few seconds after a new compute node has been
added.

6.7 System Comparison

In this section, we provide a system comparison to specialized
systems in the following settings: single-node in-memory, single-
node out-of-memory, and distributed in-memory.
6.7.1 Single-node In-Memory. In the single-node in-memory
scenario, we compare ScaleStore to a state-of-the-art in-memory
B-tree [14, 64] that uses optimistic-lock-coupling (OLC). We use
400𝑀 records (120 GB) to ensure that the entire B-Tree fits in mem-
ory. Moreover, both the pure in-memory B-tree and ScaleStore’s
B-tree have the same page layout and synchronization protocol.
This allows us to quantify the overhead of ScaleStore being able
to scale-out and handle out-of-memory workloads.

The results of the comparison are shown in Figure 11 (upper
row). We can observe that the overhead in the read-only work-
load is more prominent than in the write-heavy workloads. This
is because the optimistic scheme for read-only workloads is very
efficient and thereby highlights the extra work of ScaleStore.
In ScaleStore, for every page access, a page identifier is trans-
lated to the corresponding memory pointer. While this indirection
adds some overhead, it is necessary to be able to scale-out and
handle out-of-memory workloads (i.e., pages on SSDs). The over-
head diminishes with higher write ratios, for which CPU cache line
invalidations and lock contention dominate.
6.7.2 Single-node Out-of-Memory. Next, we focus on exper-
iments with data sets that are larger than memory and compare
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Figure 12: Distributed in-memory throughput comparison.

ScaleStore with LeanStore (available at [13]), a recent high per-
formance storage engine. For LeanStore and ScaleStore, the cache
size is set to 150GBwhile we use 1𝐵 YCSB records (300GB). As such,
the data size is twice the in-memory capacity. Figure 11 (lower row)
shows that both systems perform nearly identical because both
systems are I/O bound. This shows that ScaleStore integrates
NVMe SSD efficiently.

6.7.3 Distributed In-Memory. Moving beyond a single-node
deployment to a distributed setting.

Competitors. In this section, in contrast to ScaleStore, all com-
petitors are pure distributed in-memory systems that do not come
with the overhead of integrating SSDs. One key feature of Scale-
Store is that we do not require static partitioning but dynamically
adapt on runtime. For this reason, we compare with NAM-DB [67].
NAM-DB does not rely on static partitioning either as it reads
remote data with one-sided reads and updates remote data with
one-sided writes respectively. To be fair we disabled transactions
to cleanly compare the protocol overhead with ScaleStore.

Different from ScaleStore, NAM-DB uses shared and exclusive
latches which are (un)latched with RDMA atomics, i.e., one-sided.
The second competitor is FaRM [20] which in contrast to NAM-
DB uses an optimistic synchronization scheme. Since FaRM is not
publicly available, we re-implemented a FaRM-like approach based
on lock-free one-sided reads as described in [20]. The lock-free one-
sided read retrieves the remote value and to check if the read was
consistent, we validate the versions stored in every CPU cache line.
For updates, the lock-free one-sided read is used to copy the record
to a thread-local buffer, the record is then modified and sent back to
the owner. The owner checks the version(s) of the modified record
against the local version(s), if they are equal the modified record
is installed. Finally, for both competitors, we use a pre-allocated
array (key-value pairs collocated), i.e., no collisions, which allows
them to use a single one-sided read to fetch remote data. This is
different from ScaleStorewhich uses a distributed B-tree that also
supports range queries.

Throughput. For this experiment, we use 1𝐵 YCSB-records,
distributed across 5 nodes. Figure 12 shows the throughput for
uniform and skewed accesses. First, we focus on the uniform access
pattern. When looking at the read-only workload, one can see
that FaRM outperforms NAM-DB and ScaleStore. This is because
only a single very efficient one-sided lock-free read is needed to
read a remote record, while NAM-DB requires 3 operations, i.e.,
two RDMA atomics and one one-sided read, and is thus bound by
the latency of those operations. Similar to NAM-DB, ScaleStore
is also latency bound. This is because only 50% of the data can



be cached in this workload, and thus pages are read from remote
nodes. Additionally, hot pages cannot be predicted with a uniform
workload reliably.

With the skewed access patterns, the results look different. For
the read-only workload, we can observe that with more locality
(skew) the performance of ScaleStore increases. With a light
skew of 1, the performance is comparable to FaRM, and with 1.25
we outperform them. In contrast to FaRM, NAM-DB suffers from
locality even in the read-only scenario. The reason is that RDMA
atomics limit the performance drastically; the higher the skew the
more requests are routed to a subset of the nodes which cannot
sustain the number of RDMA atomic-operations [32]. Finally, when
looking at the skewed write-heavy workloads, we can see that
ScaleStore outperforms NAM-DB and FaRM and also provides
a robust performance for higher skews (contention). In the write-
heavy workload (95% writes), the performance of NAM-DB and
FaRM drops significantly whereas the performance of ScaleStore
degrades gracefully. While FaRM and NAM-DB compete in a busy
polling manner (with exponential back-off), we use anticipatory
chaining as discussed in Section 3.4.

Latency. In addition to throughput, we additionally analyzed
the latencies for the read-only and the write-heavy workload with
uniform and skewed (1.25) access patterns. For this experiment,
we increase the target throughput until the system cannot sustain
the required throughput anymore. Based on the target throughput,
every worker is assigned a schedule when it needs to send the next
operation. This schedule is generated based on a Poisson process,
where the time between two operations is exponentially distributed.
When a worker misses a scheduled operation, we send it as soon
as possible and include the wait time, i.e., we correct the latencies.
This means that latencies spike as soon as the target throughput is
not sustainable anymore.

We show the median and the 99th percentile latencies in Fig-
ure 13. As expected in the uniform distribution the latencies of
NAM-DB and ScaleStore spike before FaRM since FaRM can sus-
tain the target throughput longer. ScaleStore’s latencies are com-
parable with NAM-DB even though NAM-DB has a very simple ac-
cess scheme, i.e., two RDMA atomics and one RDMA read, whereas
our protocol is more complex and uses larger transfer units (4 KB
pages due to the SSD integration), yet it only adds a marginal over-
head. Moreover, as mentioned before, in the read-only workload
we only cache 50% of the workload and constantly fetch new pages
from remote nodes. The eviction batches pages to sustain the rate
of incoming pages and to maintain enough free space. Batching
increases the 99th percentile latency because a worker may wait
for a page that is currently in the eviction process. However, the
median latency is not affected and thus comparable to NAM-DB.

In the skewed read-only workload, we can observe the benefit
of caching in ScaleStore. Whereas in the skewed write-heavy
workload, anticipatory chaining allows ScaleStore to achieve a
higher target throughput than both competitors.

Discussion. To summarize, the results show that our system
provides robust performance across different workloads and even
outperforms pure distributed in-memory systems for skewed work-
loads due to caching and anticipatory chaining. This is especially
prevalent in the write-heavy contended scenarios in which the
performance degrades gracefully, compared to our baselines.
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Figure 13: Distributed in-memory latency comparison.

Let us mention that we handle out-of-memory workloads and as
a result require an additional indirection. This prevents ScaleStore
to use FaRM’s one-sided lock-free reads and thus have a slightly
higher latency in the uniform workloads. Moreover, important to
note is that we measured the best case scenario (upper-bound) for
NAM-DB and FaRM, where we know exactly where data needs to be
read; i.e., they only require a single one-sided read to fetch the data.
In the case where deletes and inserts need to be supported, typically
direct reads can not be used in NAM-DB and FaRM since additional
indexes are required to find the memory location. Hence, we argue
that the benefits of our implementation which also supports such
cases outweigh the slight performance overhead.

Another interesting finding was that ScaleStore can benefit
from the locality. In this case, our system can leverage caching
and exploit local DRAM. In contrast, NAM-DB cannot fully use
locality, even when data is fully partitioned, because the RDMA
atomics are not compatible with local CPU-atomics, which means
that NAM-DB requires two RDMA atomics even when accessing
local data [67]. While FaRM can fully exploit locality they do not
provide a general-purpose caching solution. FaRM has hard-coded
rules for some data structures, i.e., cache inner nodes of their B-Tree
implementation. Since they do not have a general caching protocol,
they can only exploit locality if such hard-coded rules are provided.
ScaleStore instead provides a general-purpose caching solution
combined with a high performance eviction that works for arbitrary
data structures.

7 RELATEDWORK

This paper is related to the following distinct lines of work:
RDMA-enabled Systems. Recent work on RDMA-enabled in-

memory DBMSs [5, 20, 21, 33, 46, 47, 56, 67–70, 73] and key-value
stores [31, 44, 48, 54] achieve unprecedented performance for dis-
tributed systems. However, most do not support high performance
NVMe SSDs to economically store cold data as ScaleStore.

In a similar spirit as ScaleStore, some of the other systems [20,
21, 56, 67] expose a distributed shared address space in which every
node can access every data item. To exploit the shared address space,
one-sided RDMA operations are used to directly access remote data
and traverse data structures such as B-Trees or hash tables. To pre-
vent multiple round-trips such systems rely on different approaches:
Either data is merged with the index [20, 21, 56] or the index is
fully or partially replicated [11, 49] at all servers, which has other
downsides such as keeping data consistent under replication. Kalia
et al. [33] thus avoid replication of the index and partition the data
set. However, when workload changes they need to re-partition



the data to exploit locality or fall back to expensive distributed
transactions. In contrast to these approaches, ScaleStore instead
provides a dynamic caching protocol that automatically adapts the
placement and replication of data to the workload. Redy [70] is a
cloud service that provides high performance caches by extending
the local memory with remote memory of unutilized remote ma-
chines. Besides these research proposals, several industrial-strength
products have adopted RDMA in existing DBMSs [30, 52, 53]. Ora-
cle RAC [53], for example, has RDMA support, including the use of
RDMA atomic primitives. Microsoft SQL Server [43] uses RDMA to
extend the buffer pool of a single node. They leveraged the lower
latencies of RDMA to evict pages to remote memory instead of SSD
but do not discuss the effect on distributed databases at all.

Distributed SharedMemory (DSM). Distributed shared mem-
ory exposes the memory of a collection of machines as a shared
memory space. There are two flavors of DSM: (1) systems using
coherence protocols [10, 36, 57] and (2) systems based on partition-
ing the global memory space (PGAS) [50]. From the first category,
GAM is closely related to ScaleStore because it builds an RDMA-
based cache coherence protocol. However, while the protocol may
be related we employ multiple optimizations and outperform GAM
in our evaluation. Additionally, unlike ScaleStore, GAM does not
support transparent access to local or remote NVMe SSDs. In con-
trast to ScaleStore which uses sequential consistency, GAM uses
a weaker consistency model – partial store order (PSO) – which
in turn requires explicit placement of fences to achieve sequential
consistency. Furthermore, ScaleStore scales better and its protocol
enables anticipatory chaining. Pröbstl et al. [55] extended GAM
to enable file I/O. The second system category (PGAS) does not
abstract away remote data accesses, instead, remote accesses are
explicit. However, this makes programming muchmore challenging
compared to ScaleStore’s abstraction. Additionally, PGAS systems
often do not employ caching and thus cannot profit from locality.

Dynamic Re-partitioning & Live Reconfiguration. To dy-
namically re-partition data a number of papers [35, 45] focused
on software transactions with ownership semantics. Zeus [35], for
example, acquires all objects involved in a transaction and first
moves them to the same server. This allows Zeus to avoid complex
distributed transaction protocols and instead execute a single-node
transaction on the re-partitioned objects. A key part of Zeus’ con-
tribution is an ownership protocol that bears similarities to our
protocol, thus Zeus’ underlying idea is related to ScaleStore. How-
ever, while ScaleStore handles NVMe SSDs and provides a general
caching strategy, Zeus is in-memory only and does not discuss evic-
tion strategies at all. Instead, they focus on transactions and their
custom commit protocol. Because NVMe SSDs require different
design decisions, such as fixed-size pages or asynchronous I/O,
ScaleStore’s protocol implementation is, despite some similari-
ties, quite different. Live reconfiguration systems [23, 58, 65] only
re-partition the shards online when (severe) workload imbalances
are detected. This process is done to balance load at runtime while
minimizing the impact on running transactions.

Cloud DBMSs. Cloud DBMSs such as Snowflake or Aurora [18,
61] often decouple the storage from the compute layer. To improve
performance both systems deploy a caching solution. For instance,
Snowflake uses consistent hashing to assign queries to the nodes
which already cached the data. Queries are executed against a

fixed set of immutable blocks and thus the cached content is not
modified. Instead, a new block with the updated data is created and
old blocks are evicted by an LRU-scheme. Crystal [22] improves
caching in disaggregated architectures by reusing computations
across multiple queries. We think of ScaleStore as a distributed
storage engine that simplifies the development of disaggregated
systems. ScaleStore can include NVMe SSDs on the storage layer
and with our unified caching strategy speed up the compute layer.

Single-node Storage Engines. Now moving from distributed
settings to modern single-node storage engines [2, 6, 38, 41, 42,
51, 60, 71]. Some systems leverage NVMe SSDs while others fo-
cus on non-volatile memory (NVM) to efficiently handle larger-
than-memory workloads. NVM performance is quite different from
NVMe SSDs and closer to DRAM performance, however, NVM is
also more expensive [27] thus we focus on NVMe SSDs in Scale-
Store. Single-node high performance storage engines with NVMe
SSDs suffer from performance degradation if the hot set outgrows
the memory due to the high latencies of NVMe SSDs.

8 CONCLUSION AND FUTUREWORK

This paper introduced ScaleStore, a novel distributed storage
engine for scalable DBMSs designed for DRAM, NVMe, and RDMA.
As we have shown in our evaluation, ScaleStore can scale to large
data sets efficiently even if the data set outgrows the aggregated
main memory capacity of the full cluster. Furthermore, due to
its carefully-designed distributed caching and eviction strategies,
ScaleStore can not only efficiently adapt to workload changes
but also support very different distributed DBMS architectures and
requirements such as elasticity. In addition, we provide an easy-to-
use programming abstraction for implementing distributed data
structures managed by ScaleStore.

We think that ScaleStore can serve as the foundation for a
distributed DBMS. In the following, we thus sketch ideas for fu-
ture work. For example, a two-phase-locking concurrency control
scheme can be implemented by physically storing locks within the
tuples. This way, just like the data itself, locks are automatically dis-
tributed and managed through cache coherency. Another relevant
observation is that because our protocol always moves the data to
the processing node, we do not need a two-phase commit – even
though we are a distributed system. Instead of a two-phase commit,
each node would have its own distributed ARIES-style WAL for
recovery [63]. To avoid having to flush all distributed logs on com-
mit, a technique called Remote-Flush Avoidance [29] can be used
to commit non-overlapping transactions without any inter-node
synchronization. Finally, a distributed setting also raises the ques-
tion of high availability when nodes fail. We leave the modification
of our cache protocol to support replicas for future work.
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