W7) TECHNISCHE
H@/=) UNIVERSITAT
9~ DARMSTADT

THE BEST RUN w

SIGMOD 2020

ROBUST PERFORMANCE OF MAIN MEMORY
DATA STRUCTURES BY CONFIGURATION

(. ggg,‘; & \.@-;a‘&iif-amw & & !
v e 2}

Norman May Ismail Oukid Ilia Petrov Carsten Binnig Tiemo Bang
SAP SE (SAP SE) Reutlingen TU Darmstadt TU Darmstadt

University & SAP SE

PLETHORA OF MODERN
OLTP ARCHITECTURES

- 3 imi i
Hekaton: SQL Server’s Memory-Optimized OLTP Engine C’Iar
«\QN Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, ¢y i
“5‘\“ e Pravin Mittal, Ryan Stonecipher, Nitin Verma, Mike Zwilling D"”Iica ’Zat,'o')
Microsoft A of
Stags TObjp
. “\b\)‘g e“\ {cdiaconu, craigfr, eriki, palarson, pravinm, ryanston, nitinver, mikezw}@ microsoft.com iy i[alll * Lopy, tlle
\9\ ‘5\ "Mai1.f I"atjs Py Acp o
1 .
“‘a“ce Bss\(\g “\4\\,\\{(\6‘ ABSTRACT mercal sysiems (SI[ISI18]19]21] and rescarch protatypes dis2 " HaI.
‘\O‘ 9‘00 ézﬂ\\ca o™ Hekaton is a new database engine optimized for memory resident [2J31[71(81 [16]. However, Fekaton has a number of features that Quey ', are
. \,‘_PQ Lon P data and OLTP workloads. Hekaton is fully integrated into SQL scts it apart from fhe competition. gy ly
\,\\Q ac\\ o5 et o8 Server, it is not a scparaic system. To take advantage of Hekaton, ~ Most importantly, the Hekaton engine is integrated into SQL -y, aIId
. h 2 S . 30%9“ 3 oLy a user simply declares a table memory optimized. Hekaton tables Server, it is not a separate DBMS. To take advantage of Hekaton, ar Tayy; on
‘de g A\ a0 ?»\\N:)d vt oar® e are fully transactional and durable and accessed using T-SQL in all a user has to do is declare one or more ables in a database 1, gt OLT
) %a‘““es\ﬂ‘”‘e‘r)@ & e N5,‘3\92 the same way as regular SQL Server ables. A query can reference memory optimized. This approach offers customers major benefits oyl Jany, P
< \\ae\ Q'L“a s\\‘“\e a@s 2 both Hekaton tables and regular tables and a transaction can up- compared with a separate main-memory DBMS. First, customers ’Vcr/ags’)‘ 2075
0 e sg{\‘a\c‘:q{ & date data in both types of tables. T-SQL stored procedures that avoid the hassle and expense of another DBMS. Second, only the Bery, o TRey
axaiiue 2o, o, teference only Hekaton tables ¢an be compiled into machine code most performance-critical tables need to be in main memory: Cide e, 20
m‘g‘éavi\‘% @‘\Qgﬁ WSt et “‘ag?e - © for further performance improvements. The engine is designed for other tables can be left unchanged. Third, stored procedures ac- Aoy T 20,4 ey 0,
AW ah ‘oaie. 2 ¥ o " o™ high concurrency. To achieve this it uses only latch-free data cessing only Hekaton tables can be compiled into native machine Cry s,
30“9%‘}9!4 ‘iga‘i\\‘l \e“%\a“eg@;\\.m\\’ e S50 structures and a new optimistic, multiversion concurrency control code for further performance gains. Fourth, conversion can be {’elerog 4 ey,
P\‘gﬁa P! QO“:“ “Q\@C w&*&; R technique. This paper gives an overview of the design of the done gradually, one table and one stored procedure at a time. "”’va ey, i g z 1 N,
- o8 SR ¥ e e
9‘5‘3(\\?\‘4\“\\\:-’5?‘“ B §& o \x*‘\’\‘c“ «:tf{ w‘;»“‘ﬁ« Hekaton engine and reports some experimental results. Memory optimized tables arc managed by Hekaton and stored fes, 5 Cegg Laggy, € iy, u g, i
0P) 00 O ey . N . " . ey o7 ey e .
“’“\@n« v\; P ’&‘@’g\‘a e lr‘x\“‘“‘\?,«\“""\ Categories and Subject Deseriptors ;nurely in main memory A Hega‘;w.:’ ;gbLe s :m st\;r&l in- £ OI%':L/) Caug i log m”‘Pfq o lieg
W Jail0: | o8 = e P Y s H.2.4 [Database Management]: Systems — relational databases, exes and two index {ypes are evailable: hash indexes and range atey, 68 v, O the sy, ang
5, ¥ £ E Micnosoft SQL Server indexcs. Hekaton tables arc fully durable and transactional, & Cop, % di, abyy,, i g8 ¢, 4@
Hierasoft SUL Server though non-durable tables are also supported. gy Ue the '71’&;@5 Ly !b g, TS g
G 1T W Sings Same > Slenyg € cop Y ang Ol
seneral Terms Hekaton tables can be queried and updated using T-SQL in the Pagp, S0y, e g s gy Oty o
Algorithms, Performance, Design same way as regular SQL Server tables, A query can reference Pty 4 abre,zo ity Sy anj. g si,
S both Hekaton tables and regular tables and a single transaction can W g, S e de, ”gb,(h Inrcro Sty o g, Rl se,
\ E o Keywords update both types of tables. Furthermore, a T-SQL stored proce- Uiy, Opoy,, Mo, P ea,,‘zfchne‘, the grai,
AY” o pot L Main-memory databases, OLTP, SQL Server,lock-free data strug- durc that references only Hekaton tables can be compiled into 'l g 02y g, Slate ; My, by g,
ot P s o et T s wres, rency control, optimistic native machine code. This is by far the fastest way 1o query and rse, 4, abage S . s Y (@) ¢
et o e o A e v conrol, compilion (o e code. maodify data in Hekaton tables. Oty Prege, b, it g P Wil i,
o s B w7, e o L N : i 2 ¥ e
e ot ores Py o e igq
wei® A e e ! v Buatey
e o W e St e P o8 . kg i
2P 19 et e el 54 3
L S an architectures propose a5, 2
a0 o S e T ! re
é:c‘c \""‘r‘ o ‘*c"“‘sx w 5;“; "'“tt"ﬂ“‘ " thy (‘Pn]o‘?}
a?““,{;mc% f; ,u\"\”::: o ° o u ey
e S, ae e ollowing evolution of modern hardware o o
o Ve A7 DL e, Pol,
A oo ol
‘“‘.\ﬂx_ o AsEEY L
e ot
[CHaRe ON T e Of
Gl ‘“\'&‘\ o 02 ey “‘;:w““fcnﬁ““f‘ lop, . My, [‘Vﬂntk
RO it oot gond Lo &7 g, sy -
O U gy Ele
o 2 o e e i
e S U S e B ore,
AT oo S
) Lt
@ gnee
w7
o

TECHNISCHE

universitaT — THE BEST RUN

DARMSTADT

®

CANDIDATE 1: H-STORE

Kallman et al.: Fine-grained shared-nothing architecture!!]
Gen-Z Sandbox ZOOO cores, ZOO TB memory!?l

TS

Database Node

Txn Coordinator

Scalable OLTP architecture:
Partitioning per Applies to broad hardware

= l core Depends on partitioning:
rtition

Sens1t1ve to skew!

[1] Kallman et al. 2008. H-Store: a High-Performance, Distributed Main Memory Transaction Processing System. Proc. VLDB Endow.
[2] Pavlo. 2011. Magical Parallel OLTP Databases. https://hstore.cs.brown.edu/slides/hstore-houdini-nov2011.pdf
[3] Burts. 2018. HPE BOOTS UP SANDBOX OF THE MACHINE FOR EARLY USERS. https://www.nextplatform.com/2018/06/21/hpe-boots-up-sandbox-of-the-machine-for-early-users/

#3 TECHNISCHE
3 </~ unwversitaT - THE BEST RUN
') DARMSTADT i

CANDIDATE 2: HEKATON

Diaconu et al.: Efficient shared-everything architecturel*!

E.g.: TPC-C on many-core hardware

Joint operation by all resources on all data:
+ Non-partitionable workloads
+ Fluctuating workloads

Few warehouses

- Physical contention
- NUMA effects

[4] Diaconu et al. .2013. Hekaton: SQL Server’s Memory-Optimized OLTP Engine. SIGMOD.

- universitaT THE BEST RUN w
STADT ®

4

DESIGN SPACE OF
OLTP ARCHITECTURES

— o
- -

Complex
e.g. non-partitionable

Workload
Hekaton

Simple

e.g. partitionable Small Hardware Large
e.g. Microsoft’s e.g. Gen-Z
Open CloudServer!s] [3]

&

» How to achieve robust performance for entire design space?

[5] Drake et al. 2015. Microsoft’s Open Cloud Server. http://download.microsoft.com/download/B/1/7/B179029E-7AE8-447A-B8C9-B823B3DFCT727/Microsofts_Open_CloudServer_Strategy_ Brief.pdf

ECHNISCHE
-y universitaT - THE BEST RUN
DARMSTADT o

IDEA:
CONTIGURE OLTP ARCHITECTURE

One size does not fit entire design space!
Simply resize to fit point in design space!

Flexible resource partitions Partitionable on many-core

Optimal instantiation ———— = Optimal architecture
Non-partitionable
for any workload

on multi-socket
& @) (= on any hardware

TECHNISCHE
universiTaT THE BEST RUN
DARMSTADT o

EXAMPLE:
CONTFIGURATION FOR WORKLOADS

~ ~
Complex ‘ Read- \\ Throughput of YCSB workloads

e.g. non-partitionable Update / on 8-socket hardware

200

Workload
Hekaton

) II
0

R-O

Simple >
e.g. partitionable Small Hardware Large
e.g. Microsoft e.g. Gen-Z

Open CloudServer!S!

» Simply optimise architecture for given workload!

I
universitAaT - THE BEST RUN
STADT ®

7

CONFIGURATION
OPPORTUNITIES

Configuration = flexible resource partitions + optimal instantiation

Existing architectures

Mimic:

e.g. NUMA-aware for read-only

v 4 LS Optimally

A A [ra A sized:

workload

Fitting partitioning
(a)fa) fafa;
AlAal alal
(aya) Mafa)
Alafanal

e.g. reduce contention for read-
update workload

For discrete components

Individually
sized:

A Q) [a@®

A A A A
I I

A A@)

A%) A A
\

e.g. H-Store for hot + NUMA-aware

for cold indexes in single
architecture

» Configure optimal DBMS architecture without redesign!

DA

%% TECHNISCHE

& unversitar - THE BEST RUN
RMSTADT

SAP4

CONFIGURATION
APPROACH

Deploy

v

Configurable Configuration
Virtual Domains procedure
S350 2@ [~
L— Pl A A A A
[QU VR T > | |
[[A@) |a
|) A Al A A |

Linear program
instantiates virtual domains
and assigns data structures

Virtual resource partition +
Contention and locality Domain

Initial Calibration I
‘ Actual workload
- and hardware

Write-Heavy

" E.g. hot and cold indexes
on 4-socket server

System size

Capture general behaviour
of data structures

[6] Chiarandini. Linear and Integer Programming Lecture Notes. https://imada.sdu.dk/~marco/Teaching/AY2014-2015/DM554/Notes/dm554-main.pdf

on runtime

Establish efficient operation
between partitions...

9

TECHNISCHE
-y universitaT - THE BEST RUN
3 DARMSTADT o

CONFIGURATION
RUNTIME

Allow efficient execution across individually optimised partitions

Delegation + async. execution
of Data-aware Tasks

Access partitions via Data-aware Task: Data Siructurex

* without interfering - [invoke(Tasky)l€—] Future |« Tasky

 with maximal utilisation Inbox

e with minimal overhead L P Vet
Virtual Domain 1 y__l__r}ual Domain 2

In-memory Messaging

» Robust performance by efficient execution across optimal partitions!

SH7 TECHNISCHE
G~ universitatT THE BEST RUN
DARMSTADT y

10

EVALUATION:

SIMPLE WORKLOAD (YCSB)
Configuration of 2 Key-Value Stores for differing YCSB workloads

Read-Update: Read-Only:
FP-Tree Hash Map FP-Tree Hash Map
NSNS B S S 7SS {A_A: NN IR LN
I | = =1 —
socket [] A A A el W W @l e a[e s ||la wT]a @
index 1 1 I I | I I
Partitionlf_\ F—r - = - = s
ALAL janall @& @) (W @) (Ta A ja Al W@ (a5 A
AMA L AA & @A @ e laa @ @] A @A

% universitAT - THE BEST RUN
STADT ®

11

EVALUATION:

SIMPLE WORKLOAD (YCSB)

Throughput under increasing system size for differing workload

Read-Update:
FP-Tree Hash Map
ZZ| [
ZIME1
23| [ZZ
ZE[1AZ
—&— Configured 200
[%2]
—e— NUMA-Aware C‘D;i A /0
o
—a— H-Store =100 0___{-——0 ./
—¢+— Hekaton-NUMA) Z2 pn N ;g:\ AL) DAY
A"/v b TIme
—a— Hekaton 08 T c oy Snosacnos
O ONFH OO H N Oy oo N O
— = NN T NN N

System Size

Read-Only:
FP-Tree Hash Map
g Za (58
¢ ATl s ZA[22
. L I I
||fA R Z3|[Z T
8L N2 A4 |22
o
////’ JUIMIMES
o
, ¢ /A-A,‘ ‘4
r’A : A ‘.l./a v
*'.’ .isl'
gooxovhmc:oo\ow DO ITNOW O
T 0N o =) v 0N 00
NN NN -] N N
System Size System Size

> Robust across workloads, system sizes & data structures!

12

ECHNISCHE
) UNIVERSITAT
- DARMSTADT

THE BEST RUN w

EVALUATION:
COMPLEX WORKLOAD (TPC-C)

Configuration for non-partitionable TPC-C workload, 8 warehouses
(detalils in the paper)

——— Our OLTP Engine NUMA-aware OLTP Engine —a— FP-Tree —@— BW-Tree
System Size Remote Transactions
1,500 -
Dl
» 1,000 L \ . .
~ A
z
5 B e
M 500 == — O~ L -0 @——@—-0-———— . @—— ®
acz?7 | T ==Ll I
35\ -@ (|. _________________ ®
0 A A £ A A A A
48 96 144 192 240 288 336 38 0 15 25 50 75

System Size % Remote

> Robust performance for complex workload by configuration!

13

- universitaT THE BEST RUN w
STADT ®

ALL DETAILS...

Robust Performance of Main Memory Data
Structures by Configuration

Tiemo Bang” Ismail Oukid ™ Norman May
TU Darmstadt & SAP SE Snowflake Inc. SAP SE
Ilia Petrov Carsten Binnig
Reutlingen University TU Darmstadt
Abstract secondary storage (e.g., hard drives). (2) Moore’s Law and

In this paper, we present a new approach for achieving robust
performance of data structures making it easier to reuse
the same design for different hardware generations but also
for different workloads. To achieve robust performance, the
main idea is to strictly separate the data structure design
from the actual strategies to execute access operations and
adjust the actual execution strategies by means of so-called
configurations instead of hard-wiring the execution strategy
into the data structure. In our evaluation we demonstrate the
benefits of this configuration approach for individual data
structures as well as complex OLTP workloads.

ACM Reference Format:

Tiemo Bang, Ismail Oukid, Norman May, Ilia Petrov, and Carsten
Binnig. 2020. Robust Performance of Main Memory Data Struc-
tures by Configuration. In Praceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD 20), June
14-19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3318464.3389725

1 Introduction

Motivation:Within the last decade, we have seen differ-
ent hardware trends that significantly affected the design of
single-node database systems: (1) Increases in main-memory
capacities made it possible to hold even larger data sets

Dennard Scaling required processor designers to move from
single-socket and single-core designs to multi-socket and
multi-core designs. As a result of these trends, we have seen
a rapid evolution of hardware designs differing in essential
characteristics not only memory capacities but also the un-
derlying topology of how cores and memory are connected
as well as cache sizes and coherence protocols.

A considerable body of existing work in DBMS research
has thus focused on optimising the design of core DBMS
data structures such as indexes for specific hardware con-
figurations and workloads. For example, there have been
wvarious design alternatives proposed for classical B-trees to
adapt them to modern memory hierarchies and make them
more cache-conscious for read-heavy workloads [33, 34] or
to optimise their behaviour for high-contention scenarios
[25] under write-heavy workloads. A significant issue with
this manual tailoring of core DEMS data structures is that
not only their redesign involves high effort and reintegra-
tion into the DBMS but also that a design optimal for one
hardware generation and one workload might induce severe
performance degradation on another hardware generation
when underlying assumptions change.

Analternative to this approach is designing data structures
that can provide robust performance [18]. At its core, robust

TR RPT RO 17 TPUAY SO TR Y,

https://doi.orqg/10.1145/3318464.33897125

14

TECHNISCHE
"\ UNIVERSITAT
DARMSTADT

THE BEST RUN w

https://doi.org/10.1145/3318464.3389725

CONCLUSION

» Optimise DBMS architecture
without redesign

i.0org/10.1145/3318464.3389725

by configuration! o

Stay healthy and see you next year in person!

75 TECHNISCHE
15 177 UNIVERSITAT
' DARMSTADT

THE BEST RUN w

https://doi.org/10.1145/3318464.3389725

