GTNA - A Framework for the Graph-Theoretic Network Analysis

Benjamin Schiller
Max Miihlhiuser

Dirk Bradler

Immanuel Schweizer
Thorsten Strufe

TU Darmstadt, Darmstadt, Germany
{lastname[at]cs.tu-darmstadt.de}

Abstract

Concise and reliable graph-theoretic analysis of complex net-
works today is a cumbersome task, consisting essentially of
the adaptation of intricate libraries for each specific prob-
lem instance. The growing number of complex metrics that
have been proposed in the last years, which mainly gain
significance due to the increasing computational capabili-
ties at hand, have led to important new insights in the field.
However, they have solely been implemented as single algo-
rithms, each specialized for the purpose of calculating exactly
the targeted metric for a selected type of network graph. A
comprehensive, extensible tool for the concise evaluation of
graphs is currently not available. For this purpose we intro-
duce the Graph-Theoretic Network Analyzer (GTNA), an ef-
ficient, Java-based toolkit for the comprehensive analysis of
complex network graphs. GTNA, while already including the
main metrics that are used to analyze the complex networks
in computer science today, is simple to extend through a well
defined plugin interface for metrics, network descriptions and
network generator models. Throughout the paper we present
the design and simple extensibility of GTNA, as well as the
network models and metrics that are already implemented
and give examples of its scalability and performance.

Keywords: Graph theory, Networks, Analysis, Peer-to-peer

1. INTRODUCTION

Complex networks are omnipresent in our daily life. Peer-
to-Peer (P2P) technology, e.g., which leverages on distributed
resources and hence creates highly complex networks, is al-
ready established in several application domains. The self-
organizing capabilities of P2P enable fast deployment with-
out the need for manual configuration of individual peers. Es-
pecially in an unreliable and fast changing environment, P2P
technology can be used as a basis for communication infras-
tructures. Wireless sensor networks, to state another example,
are deployed in cars, houses and all types of open territo-
ries. Each wireless sensor has very limited capabilities, but
in the conjunction, creating an instance of a wireless sensor
network, even complex tasks can be accomplished. The most
prevalent complex network is the Internet. Measurements on
the level of autonomous systems show that it is dynamic
and still growing. In addition, common laptops, cell-phones

and PDAs may join a wireless ad-hoc network and commu-
nicate instantaneously. All distributed communication struc-
tures have to face several challenges considering routing per-
formance, message loss, resilience against attacks, node fail-
ures, scalability and efficiency. In order to analyse and evalu-
ate the behavior of such distributed systems, several network
simulation engines have been developed. It seems like simu-
lation is the research tool of choice for a variety of network re-
lated research challenges. Nevertheless, with rising popular-
ity of simulations, the credibility of the results has decreased.
By surveying MANET simulation studies of the ACM In-
ternational Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc) [1] significant unresolved challenges
were found. One key finding is, that a comparison of sim-
ulation studies is hardly possible. Only 15% of the simula-
tion studies of the published ad hoc papers between 2000 and
2005 were repeatable [1]. In order to achieve a fair compari-
son of different kinds of simulation results, a common simula-
tion engine, a common workload as well as a set of important
metrics need to be supported and maintained by the network
research community. Nevertheless, the better known simula-
tors support the storage of network snapshots at certain inter-
vals. Even though the dynamic behavior of the network is not
captured in a snapshot, a graph theoretic analysis of the un-
derlying topology is feasible. In this paper we present GTNA,
a framework for the graph-theoretic network analysis. GTNA
is especially developed for the comparison of structural prop-
erties found in complex communication networks.

The remainder of the paper is structured as follows: Sec-
tion 2. discusses related work. In section 3. we present the
basic approach of the simulation workflow, currently avail-
able network topologies and the implemented metrics. In sec-
tion 4. the architecture of our proposed framework is pre-
sented in detail. Configuration and extension of both, network
topologies and metrics are shown in section 5. An example
configuration is presented in section 6. Measurements of run-
time behavior are presented in section 7., followed by sum-
mary and outlook in section 8.

2. RELATED WORK

Making real world testbeds for complex technological net-
works scalable is a hard and expensive task. Simulation tools
are widely accepted to overcome this problem.

Different solutions for simulation have emerged over the

years. Tailor-made solutions for one application are common,
like PeerSim [2] and PeerfactSim [3] for Peer-to-Peer net-
works. Domain-independent solutions like PlanetSim [4] can
simulate different networks but are restricted to certain lay-
ers. Powerful frameworks like JIST [5], Omnet++ [6] and
NS2/NS3 [7, 8] can be extended to serve almost any kind of
application. There are even more basic approaches like Parsec
[9] that specify programming languages for parallel system
simulation.

The main goal of any simulation is to estimate the outcome
of an abitrary system without the need to actually build that
system. So a major part of any simulation process involves the
need to analyse the results of the simulation. The simulation
of complex technological networks can be analysed either by
dynamic or structural properties. Dynamical properties are
for example throughput or message delay. Structural proper-
ties focus on the analysis of underlying graph properties such
as the degree distribution.

The simulation tools mentioned above focus mainly on dy-
namic properties. They can and have been used in the past to
compare algorithms and make good estimations on the real
world behavior. But dynamic properties do highly rely on the
quality of the model and tools used to evaluate them.

Structural properties have to be evaluated by using exter-
nal tools for graph analysis. There are several examples like
Pajek [10], Leda [11] or the Boost Graph Library [12] that fo-
cus on structural analysis. Their disadvantage is that they can
only analyse already exisiting network snapshots. The Net-
work Workbench [13] tries to overcome this issue but it fo-
cuses mainly on complex networks in biological, social and
physical sciences and offers only a limited set of properties.

Structural properties can help to give a deeper understand-
ing of how the underlying complex network works. For exam-
ple, comparing shortest path lengths to real routing paths can
give insight of how good the routing on top of the given net-
work topology is. Analysis of graph snapshots can therefore
give bounds on the possible performance of any application
build on top of such a graph. Other upcoming metrics like
motifs [14] and role-to-role connectivity [15] give an even
deeper understanding of the local structure and responsibili-
ties of a single node.

GTNA is the first approach that combines simulating tech-
nological networks with an indepth structural analysis into
one toolkit.

3. OUR APPROACH

Due to the varietey of network simulators with different in-
put and output formats it is crucial for an analysis approach
to support both, a flexible plugin mechanism for input data
(e.g. a network topology from another simulation or emula-
tion) and an extendable metrics analysis mechanism. In the
next section the features and design considerations for han-

dling communication networks, series of snapshots, metrics
and plotting are presented. The following section shows the
networks already implemented, followed by the implemented
metrics.

3.1. Modules

Our analysis approach called GTNA is divided into four in-
terchangeable modules with distinct tasks. The network mod-
ule provides a network topology generation mechanism. The
metrics module provides a set of already implemented met-
rics and an interface for new metrics which need access to the
network structure. The series module allows the combination
of a set of simulation runs as well as import mechanisms to
read already available traces or simulation data. Aggregated
data, like the average, variance and the 95% confidence inter-
val are calculated automatically. The plotting module wraps
the freely available plotting software gnuplot [16], knowledge
of the gnuplot script syntax is not necessary.

3.1.1. Network

A new communication network is created by implement-
ing the interface gtna.networks.Network. A set of parameters
for the new network may be set according to it’s needs. E.g.
the content addressable network (CAN) [17] is already im-
plemented. The important attributes for CAN are the number
of nodes, the dimensions and the number of realities. Our ap-
proach is capable of comparing results for any combination
of the chosen input parameters. E.g. a scalability evaluation is
performed by simply scheduling several runs of the same net-
work with growing network size. An analsysis of the effects
of multiple realities and dimensions in CAN is performed in
the same way. Of course, other network approaches require a
completely different set of parameters, nevertheless, with this
tool, cross comparisons for different network configurations
of the same network can be performed.

3.1.2. Series

A series provides aggregation and summaries for several
simulation runs. All kind of communication network topolo-
gies can be arranged in a series. Averages and confidence in-
tervals for all metrics are automatically calculated. A series
is created with the wrapper class gtna.data.Series. Input data
for a series can be provided in two ways, either by importing
available traces, emulations and simulations or by creating
the network topology within GTNA.

3.1.3. Metrics

A basic set of metrics is already developed for GTNA. In
order to extend the available set of metrics the interface gtna-
metrics.Metric is provided. All basic operations are imple-
mented by the abstract class gtna.metrics.MetricImpl.

The provided metrics can be divided into single-
scalar and multi-scalar metrics. The single-scalars are
wrapped by gtna.data.Value and stored in an instance of
gtna.data.Singles. They calculate one value for each graph.
Well-known examples are characteristic path length and clus-
tering coefficient. Important multi-scalars are shortest path
length distribution and local clustering coefficient.

3.1.4. Plotting

One of the well-known tools for plotting is the freely avail-
able gnuplot software [16]. It is under active development
since 1986 and capable of plotting almost any graph required
for the network community. Nevertheless, gnuplot requires
a steep learning curve. It is command-line driven and hard
to learn for novice users. GTNA uses gnuplot for plot cre-
ation. It is not required to know any gnuplot syntax for plot-
ting a graph with GTNA. All commands needed to run gnu-
plot are shielded in the class gtna.plot. GNUPlot. All results
can be freely combined and plotted in one or several plots.
If required, even multiple metrics for multiple series can be
condensed in one plot.

The data is plotted using the class gtna.plot.Plot. To plot
single-scalar values, a coherent graph requires several in-
stances of a distinct network. One typical example would
be the development of the characteristic path length with in-
creasing network size.

3.2. Implemented Networks

GTNA provides a set of reference networks that are lo-
cated in the package gtna.networks.canonical. These network
topologies, namely ring, star and fully connected, are help-
ful when implementing new metrics because their properties
are very clear and metrics easily computable by hand. The
package gtna.networks.model contains implementations for
many well known network models such as the random net-
work model by Erdds and Rényi [18] and Kleinberg’s Small-
World model [19]. Table 1 shows the implemented network
models and their configuration parameters.

Table 1. Implemented network models

Name Parameters
BarabasiAlbert edges per node

DeBruijn base, dimensions
ErdosRenyi average degree, direction
Gilbert edges, direction

GNC direction, edge back

GNR redirection prob., direction
Kleinberg dimensions, alpha
UnitDisc square size, radius
WattsStrogatz successors, beta

Table 2 shows the better known P2P networks, whose
topology generation is provided by GTNA. The framework
also includes methods to read graphs from files supporting
a number of different formats. This includes the Geography
Markup Language (GML) [20] format as well as the internet
mappings provided by the Cooperative Association for Inter-
net Data Analysis (CAIDA) [21].

Table 2. Implemented P2P networks

Name Parameters

CAN dimensions, realities

Chord bits per ID, successors

Gnutella04 -

Gnutella06 -

Kademlia bits per ID, bucket size, alpha, lookups

ODRI base, dimensions, walk length

Pastry bits per ID, base

PathFinder virtual peers, neighbors, direction

Symphony long links, successors, retries, direction
3.3. Implemented Metrics

Metrics can easily be implemented with the provided in-
terface. Table 3 shows the currently implemented metrics.
The column submetric shows the implemented related met-
rics. They are calculated by slightly adapting the basic metric
algorithm, by altering its input data or filtering the output val-
ues.

4. SOFTWARE ARCHITECTURE

Network Metric Plot
(Config) (Config) (Config) Input

Computation
Generation

> Output / Input

Figure 1. Workflow of GTNA

Figure 1 shows the workflow of GTNA. Each of the four
modules is used to produce the desired output that serves as
input for another one. We describe this workflow by using
two CAN networks with different configurations and a Chord
network as an example.

First, a network configuration is created using a custom set
of parameters depending on the type of network and its de-
sired configuration (listing 1).

Table 3. Implemented Metrics

Name Submetrics

Average Neighbor Degree average neighbor (in / out)
degree by (in / out) degree
local clustering coefficient,
weighted clustering coeffi-
cient, clustering coefficient
(int / out) degree (comple-
mentary) distribution, aver-
age / max / min (in / out) de-
gree

development of average iso-
lated cluster size / num-
ber of clusters / max cluster
size, average / max number
of clusters, point of rupture
[node removal by random or
(in / out) degree] [computa-
tions uni- or bidirectional]
routing length (comple-
mentary) distribution,
local characteristic routing
length, max routing length,
characteristic routing length
shortest path length distribu-
tion, expansion, local char-
acteristic path length, di-
ameter, characteristic path
length, connectivity

rich club connectivity

Clustering Coefficient

Degree Distribution

Network Fragmentation

Routing Length

Shortest Path Length

Rich Club Connectivity

Listing 1. Creating a network configuration

1 Network canl = new CAN(500, 2, 1);

> Network can2 = new CAN(500, 3, 1);

3 Network chord = new Chord(500, 32, 16);

Every network class must implement the interface
gtna.networks.Network in order to provide all methods
that are needed for further computations. The basic
methods are already implemented by the abstract class
gtna.networks.NetworkImpl. Network size, output destina-
tion and network name are some of them which are mostly
needed for output generation. The most important method
of every network implementation provides the generation
of a network connectivity graph. It creates an object of the
type gtna.graph.Graph that contains the underlying network
graph. Every network component is represented by a node of
type gtna.graph.Node. An edge exists between two nodes if
they are connected in the network topology. The structure of
this graph depends on the specific design of every network
and is influenced by the configuration parameters given by
the network configuration.

A series (gtna.data.Series) contains a given number of
graphs generated from one network configuration (listing 2).
These graphs share certain properties, such as the number of
nodes, contain roughly the same number of edges and possess
a similar degree distribution.

Listing 2. Generating series from network configuration
1 Series canlSeries = Series.generate(canl, 10);
2 Series can2Series = Series.generate(can2, 10);
3 Series chordSeries = Series.generate (chord, 10);

This concept allows not only for the generation and compar-
ison of different network types. It also enables us to observe
the impact of changes in the network configuration on the
network’s structure and key properties. While a series holds
information about the generated graphs, it is also used to ag-
gregate data. It provides average values and confidence inter-
vals for the data derived by applying metrics to the graphs.
These values are generated by gtna.data.AverageData and
gtna.data.ConfidenceData. They are used in the last step of
the workflow to generate plots for a given series or a set of
multiple series.

In the next step, the implemented metrics generate the data
for every graph contained in the series. Every metric must
implement the interface gtna.metrics.Metric and may extend
the abstract class gtna.metrics.MetricImpl which provides ba-
sic methods. These methods are called during series creation
which generates and writes the data from all metrics (in folder
/data/) as well as the single-scalar results (/singles.txt)
and a readable version of the whole graph (**/graph.txt).

Listing 3. Plotting data

1 Series[] allSeries = new

2 Series [] {canlSeries, can2Series, chordSeries };
3 Plot.multiAvg(allSeries , ”./plots/multi—avg/”);

4 Plot.multiConf(allSeries , ”./plots/multi—conf”);

The average data and confidence intervals as well as the
single-scalar values are then used as input for the various
plots. The plotting functionality is provided by gtna.plot.Plot
(listing 3) and uses gtna.plot. GNUPIot as an interface to gnu-
plot.

Listing 4. Plotting single-scalar values

1 Series[] sl = Series.generate (new Network[]{

2 new CAN(500, 2, 1), new CAN(1000, 2, 1),

3 new CAN(1500, 2, 1), new CAN(2000, 2, 1)}, 10);
4 Series[] s2 = Series.generate (new Network[]{

5 new CAN(500, 3, 1), new CAN(1000, 3, 1),

6 new CAN(1500, 3, 1), new CAN(2000, 3, 1)}, 10);
7 Series [][]1 s = new Series[][1{ sl, s2 };

8 Plot.singlesAvg(s, ”./plots/singles—avg/”);

9 Plot.singlesConf(s, ”./plots/singles—conf/”);

Plotting single-scalar values is not very useful since the
plots would only contain single points. It is therefore sup-
ported to plot the development of the single-scalar values dur-
ing the change of one parameter, the most common and im-
portant one being the network size. This allows for the com-
parison of attributes as a network grows and is crucial for

the analysis of network scalability. Multiple sets of different
networks can easily be compared as the example shows (/isz-
ing 4).

The class hierarchy of GTNA is mostly structured by the
different modules and is shown in table 4.

Table 4. Packages of GTNA

Package Description
gtna.data series, data generators
gtna.graph graph, node, edge
gtna.io input and output

gtna.metrics
gtna.networks
gtna.plot
gtna.util

implemented metrics, interface
implemented networks, interface
plotter, gnuplot interface
utilities

5. CONFIGURATION AND EXTENSION

Since the network interface requires the imple-
mentation of several methods, the abstract class
gtna.networks.NetworkImpl implements most of them

and can be used by extending it. Its constructor only has four
parameters: a network-specific key for the identification of
the metric, the desired network size, an array containing the
parameter keys and an array with the specific configuration
parameters. The only method that needs to be implemented
for every single network is the generation of a specific
network graph using the unique network design and the given
parameters. The following example implements the network
NoEdges (listing 5). It requires the examplary parameter p1.
The Graph is generated without assigning any edges to the
nodes.

Listing 5. Creating a new network
1 public class NoEdges extends NetworkImpl
2 implements Network {

3 private int pl;

4 public NoEdges(int nodes, int pl){

5 super ("NE”, nodes, new String []{”P1”},
6 new String [1{pl + " });

7 this.pl = pl;

8

9

public Graph generate (){
10 Node[] nodes = Node.init(this.nodes());
11 return new Graph(this.description(), nodes);
12 }
13}

The unique key NE is used to obtain certain values from the
configuration file such as the network’s name and the output
folder (listing 6).

Listing 6. Basic network configuration
| NE_NAME = No Edges

2 NE_FOLDER = noEdges

3 NE_P1_NAME = Parameter 1

All contents of the configuration file can be accessed using
the class gtna.util. Config. By default, the configuration file
is read from ./conf.properties but can be read from another
source at any time using the static method Config.init(String
filename).

Listing 7. Creating a new metric

1 public class NodesOfDegree extends MetricImpl
B implements Metric {

3 private int[] nod;

4 private int domn;

5 public NodesOfDegree () {

6 super ("NOD”) ;

7

8 public void computeData(Graph g) {

9 // compute nod and domn

10 }

11 public void writeData(String folder) {

12 DataWriter. write ("NODNOD” , folder , this .nod);

14 public Value[] getValues() {

15 Value domn = new Value (”NODDOMN”, this .domn);
16 return new Value[]{ domn };

17 }

18}

Creating a new metric and including it in the frame-
work also requires the implementation of an interface:
gtna.metrics.Metric. As in the case of networks, there exists
an abstract class that implements most of these methods in a
standardized way: gtna.metrics.MetricImpl. The only method
besides writing data and return single-scalar values that needs
to be implemented is the computation of the metric-specific
data. This is shown by the implementation of a simple metric
called NodesOfDegree (listing 7). It computes the simple met-
ric Nodes of Degree (NOD) that counts the number of nodes
for every degree as well as the single-scalar metric Degree of
Most Nodes (DOMN) which is the degree of the largest group
of nodes.

Listing 8. Configuring a metric
NOD_CLASS = NodesOfDegree
NOD_NAME = Nodes of Degree
NOD_DATA_KEYS = NOD_NOD
NOD_SINGLES_KEYS = NOD_DOMN

NOD_DATA_PLOTS = NOD_NOD
NOD_SINGLES_PLOTS = NOD_DOMN

NOD_NOD_DATA_NAME = Nodes of Degree
NOD_NOD_DATA_FILENAME = nod

Z S50 ®uou s w0~

NOD_DOMN_SINGLE_NAME = Degree of Most Nodes

To allow the super-class MetricImpl as well as the Series
to access the new metric, it needs to be configured properly
(listing 8). Single- and multi-scalar metrics also need to be
included in the configuration file.

Listing 9. Including a metric in the workflow

1 ## METRICS = CC, DD, RCC, RL, SPL
2 METRICS = CC, DD, RCC, RL, SPL, NOD

To include an implemented and configured metric into the
overall workflow, it needs to be added to the set of metrics.

Again, the unique key is used and simply added to the entry
METRICS in the configuration file (listing 9).

Every plot requires a number of field such as the filename
for the plot, title and names for x- and y-axis. The unique keys
assigned to each metric result are used to configure the plot
of metric data or their combination. The field DATA contains
a list of all data keys that should be contained in the plot. If
only a single metric is to be plotted, this list contains only this
one key as in the case of the plot of the nodes of degree metric
(listing 10).

Listing 10. Configuring a plot
NOD_NOD_PLOT_DATA = NOD_NOD
NOD_NOD_PLOT_FILENAME = nod
NOD_NOD_PLOT_TITLE = Nodes of Degree

NOD_NOD_PLOT_X = Degree d
NOD_NOD_PLOT_Y = # (nodes (d))

[T N

To combine multiple metric data in one plot they all need
to be added to the data list. The following example shows the
configuration for a single-scalar plot that combines the de-
gree of most nodes metric with the maximum and minimum
node degree (listing 11). The latter ones are computed by the
degree distribution metric.

Listing 11. Combining multiple metrics in one plot
| DOMN_MIN_MAX_PLOT_DATA = NOD_DOMN, DD_MIN, DD_MAX
> DOMN_MIN_MAX_PLOT_FILENAME = domn-min-max

3 DOMN_MIN_MAX_PLOT_TITLE = DOMN / D-min / D-max
4 DOMN_MIN_MAX_PLOT_Y = domn / d-min / d-max

6. EXAMPLE

The most common use of our framework so far has been
the analysis of single networks as well as their comparison to
other networks, common network models and different con-
figurations of the same network. Figure 2 shows the develop-
ment of the shortest path length distribution of a CAN net-
work when increasing the number of dimensions. Since rout-
ing in a network does not always follow the shortest path pos-
sible, the routing length of the CAN routing algorithm is also
plotted.

Single-scalar values may be as a function of the network
size. Thereby they illustrate the network properties under net-
work growth. As an example, the development of the diame-
ter of different CAN networks is shown in figure 3.

7. EVALUATION

In section 5. we have shown how to implement new metrics
in GTNA. Evaluations for complex networks like current P2P
networks, have to be performed with network sizes of sev-
eral thousand nodes. E.g. the P2P network Tapestry [22] was
simulated with 4096 nodes, Chord [23] was evaluated with
10.000 simulated nodes, Symphony [24] was evaluated with
up to 16.384 nodes. Newer complex networks might even re-
quire more nodes for a significant analysis. In order to pro-
vide a network tool for daily usage, one requirement is to

Routing Length Distribution vs. Shortest Path Length Distribution
0.25

RLD - CAN - 5000 (dimensions = 2, realiies = 1) +
SPLD - CAN - 5000 (dimensions = 2, realities =1) ~ x
RLD - CAN - 5000 (dimensions = 3, realities = 1)
SPLD - CAN - 5000 (dimensions = 3, realities = 1)
RLD - CAN - 5000 (dimensions = 4, realites=1) =
0.2 ? SPLD - CAN - 5000 (dimensions = 4, realites=1) ©
0.15
T
&
0.1 F
g
0.05 [2
¢ W
0 ' e M =2 VI
0 10 20 30 40 50 60 70

Routing Length rl / Shortest Path Length |

Figure 2. CAN: routing length vs. shortest path length

Diameter
80

CAN -x (dimensions = 2, realiies = 1) +
CAN - x (dimensions = 3, realities = 1)
CAN - x (dimensions = 4, realities = 1 *
60
© /
&
g 40
o
a
30
20
____________________ A
10 ki et
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Nodes

Figure 3. CAN: development of the diameter

have GTNA running on regular desktop computers. For eval-
uation we have chosen a 2.4 GHz Intel Core 2 Duo processor
running MAC OS 10.5.8 with 2 GB of memory. Besides the
time needed for calculating the desired metrics, the required
amount of memory limits the scalability of GTNA. Our goal
was to evaluate network topologies with more than 20.000
nodes, requiring less than 2 GB of memory. We have used an
ErdosRényi random graph with an average degree of 20, 30,
40 and 50 for evaluation. Currently GTNA is implemented in
JAVA, we used version 1.5.0_22 for all experiments.

We have chosen the shortest-path-length (SPL) metric for
evaluation, since it is the most CPU consuming metric cur-
rently implemented and therefore determining the runtime of
the whole analysis. Figure 4 shows the runtime in seconds
needed for network sizes between 1.000 and 20.000 nodes
calculating the SPL metric. It does highly depend on the num-
ber of nodes, but even a network of 20.000 nodes with average
degree of 50 is analyzed in about 3 minutes.

Figure 5 shows the required memory for the conducted

Table 5. Runtime for ErdosRényi with average degree 50

Metric 1.000 2.500 5.000 7.500 10.000 12.500 15.000 17.500 20.000
Average Neighbor Degree 0.500 0.300 0.500 0900 3.500 3.100 3.600 4.100 4.600
Clustering Coefficient 0356 0972 1991 3.139 4322 5785 7.158 8.074 9.542
Degree Distribution 0.000 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.003
Network Fragmentation (U) 0.173 0.489 1.078 1.896 3.060 4.015 5.207 6.867 7.931
Network Fragmentation (B) 0.154 0.361 0.738 1.151 1.690 2.067 2.569 3.023 3.628
Rich Club Connectivity 0.115 0.722 2997 6931 12.868 21.816 30.205 43.285 56.119
Shortest Path Length 0.307 2.126 9.511 22.543 42311 69.591 102951 146.539 190.755
Memory Usage in MB 7491 16.704 3191 47.041 34.228 42552 46.281 63.093 66.57
Runtime: Shortest Path Length memory, we performed a scalability test with all metrics cur-
0 ' " Erdos Romy- (averageDeorse - 200, biractonal - e} + rently implemented. The limiting factor was not the CPU, but
wor Erdos Ronyi - (SverageDegres - 50,0, bdrectonal - rue) 5 | the required memory. The available 2 GB were completely
160 g consumed by a simulation with about 600.000 nodes which
140 e needed 1.9 GB of RAM.
g 120
§ 100 LSV] 8. SUMMARY AND OUTLOOK
5w " A Graph-theoretic analysis of large networks greatly aids the
o :" e understanding of complex properties. Regional functions and
o local behavior, which have a significant impact on the overall
“ ; 5:/// performance of the networks, in consequence can be identi-
20 /g/]// fied. Analysing complex networks so far has been the cum-
o 2000“‘:;ﬁ00 oo oo a0 s Tasos Tamon 20000 bersome task of adapting specific algorithms for the purpose

Nodes

Figure 4. Runtime of the shortest path length metric (in sec)

Memory usage

80
T T Erdos Fienyi -X a‘verageDebree = 201], bidirecti‘onal = true') +
Erdos Renyi - x (averageDegree = 30.0, bidirectional = true)
Erdos Renyi - x (averageDegree = 40.0, bidirectional = true)
70 - Erdos Renyi - x (averageDegree = 50.0, bidirectional = true) @ &
&
60
P . A x"
2 5 A -
£ . y
S LT
2 40 - JCRRREE
>
5 fa) e
§ 30 ! il
. A ",»--““’ ——
20 -) - S
o //
10 x
s 0
e 2
T
¥
0 i
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Nodes

Figure 5. Memory usage (in MB)

SPL experiment. Network with 20.000 nodes and more can
easily be analyzed with a regular desktop PC. The measure-
ments of the runtime behavior and the memory usage clearly
show the usability of GTNA on regular desktop PCs. Ta-
ble 5 shows the required CPU time for each metric and the
used memory. Given the 2.4 GHz processor with 2 GB of

of measuring certain single metrics in especially formatted
network graphs, and in consequence has only been viable for
specialists.

This paper introduces GTNA, the Graph-Theoretic Net-
work Analyzer. GTNA is an efficient, Java-based toolkit
for the concise analysis of complex network graphs. It al-
ready includes graph generators for selected models, like the
ErdosRényi and Gilbert Random Graphs, the Barabasi-Albert
and Kleinberg scale free graphs, and a multitude of further
graphs that are commonly used for comparison. Modules to
create parametrized, realistic topologies of all predominant
Peer-to-Peer approaches, like Chord, CAN, Pastry, Kademlia,
and Gnutella, are already provided. GTNA additionally im-
plements all major metrics used for the analysis of complex
graphs in sociology, biology, and computer science. These in-
clude all conventional networking metrics (e.g., diameter, av-
erage path length, degree distribution) as well as the common
robustness- and resilience metrics (fragmentation, consecu-
tive node removal by highest degree or random choice), and
more recent metrics for the analysis of complex networks,
such as the Rich-Club-Connectivity. The toolkit allows for the
generation and analysis of single graphs or batch-generation
analyses of multiple graphs. All results are calculated with
their confidence intervals using a normal probability distribu-
tion. GTNA is easily extensible offering a simple plugin ar-
chitecture with well defined interfaces and a comprehensive,
self-explaining parametrization using configuration files.

GTNA already contains modules for the main graph gen-
erator models and the common graph metrics. However, it
is still in the process of being extended, and to this end we
are currently implementing modules for the measurement of
network motifs [14] and the role-to-role connectivity pro-
files [15]. Additionally, we are currently providing genera-
tors for further network models, which include the PFP [25]
and PARG [26] models for the generation of realistic Internet
topologies, among others. Analysis of network dynamics is
another problem we are currently aiming at. Understanding
the topological changes throughout the life time of systems
can indicate special properties and may give deeper insight
into underlying principles of their design and function. We
are hence working towards including modules to trace and
analyse changing topologies with respect to arbitrary metrics
into GTNA.

REFERENCES
[1] S. Kurkowski et al., “Manet simulation studies: the in-
credibles,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 9, no. 4, p. 61, 2005.

[2] M. Jelasity et al., “The Peersim Simulator,” (last ac-
cessed: February 23, 2010) http://peersim.sf.net.

[3] A. Kovacevic et al., “Benchmarking Platform for Peer-
to-Peer Systems,” Information Technology, vol. 49,
no. 5, pp. 312-319, 2007.

[4] P. Garcia et al., “Planetsim: A new overlay network sim-
ulation framework,” Software Engineering and Middle-
ware, SEM 2004, Linz, Austria, pp. 123-137, 2005.

[5] R.Barr et al., “JiST: An efficient approach to simulation
using virtual machines,” Software Practice and Experi-
ence, vol. 35, no. 6, pp. 539-576, 2005.

[6] A. Varga et al., “The OMNeT++ discrete event simula-
tion system,” in Proceedings of the European Simula-
tion Multiconference, 2001, pp. 319-324.

[7]1 S. Mccanne, S. Floyd, and K. Fall, “ns2 (network sim-
ulator 2),” (last accessed: February 23, 2010) http://
www-nrg.ee.lbl.gov/ns/.

[8] “The ns-3 network simulator,” (last accessed: February
23, 2010) http://www.nsnam.org.

[9] R. Bagrodia et al., “Parsec: A parallel simulation envi-
ronment for complex systems,” Computer, pp. 77-85,
1998.

[10] V. Batagelj and A. Mrvar, “Pajek - Analysis and Visual-
ization of Large Networks,” in Graph Drawing, vol. 21,
no. 2. Springer Verlag, 2002, p. 477.

[11] K. Mehlhorn and C. Uhrig, “LEDA: a platform for com-
binatorial and geometric computing,” Communications
of the ACM, vol. 38, no. 1, pp. 96-102, 1995.

[12] J. Siek et al., “The Boost Graph Library: User Guide
and Reference Manual,” in Proceedings, vol. 243.
Addison-Wesley, 2002, pp. 112-121.

[13] N. Team, “Network Workbench Tool,” (last accessed:
February 23, 2010) http://nwb.slis.indiana.edu.

[14] R. Milo et al., “Network motifs: simple building blocks
of complex networks,” Science, vol. 298, no. 5594, p.
824, 2002.

[15] R. Guimera et al., “Classes of complex networks
defined by role-to-role connectivity profiles,” Nature
physics, vol. 3, no. 1, p. 63, 2007.

[16] T. Williams et al., “GNUplot: an interactive plotting
program,” 1993.

[17] S. Ratnasamy et al., “A scalable content-addressable
network,” in SIGCOMM. ACM, 2001, p. 172.

[18] P. Erdos and A. Rényi, “On the evolution of random
graphs,” Publication, 1960.

[19] J. Kleinberg, “The small-world phenomenon: an algo-
rithm perspective,” in ACM symposium on Theory of
computing. ACM, 2000, pp. 163-170.

[20] D. Burggraf, “Geography markup language,” Data Sci-
ence Journal, vol. 5, no. 0, pp. 178-204, 2006.

[21] The Cooperative Association for Internet Data Analy-
sis, “Ipv4 routed /24 as links dataset,” 2007, (last ac-
cessed: February 23, 2010) http://www.caida.org/data/
active/ipv4_routed_topology _aslinks_dataset.xml.

[22] B. Zhao et al., “Tapestry: An infrastructure for fault-
tolerant wide-area location and routing,” IEEE Journal,
vol. 74, pp. 11-20, 2001.

[23] I. Stoica et al., “Chord: A scalable peer-to-peer lookup
service for internet applications,” in SIGCOMM. ACM,
2001, p. 160.

[24] G. Manku et al., “Symphony: Distributed Hashing in a
Small World,” in USENIX. Stanford InfoLab, 2003.

[25] S. Zhou, “Characterising and modelling the internet
topology - The rich-club phenomenon and the PFP
model,” BT Technology Journal, vol. 24, no. 3, pp. 108—
115, 2006.

[26] M. Piraveenan et al., “Local assortativity and growth of
Internet,” 2009.

