
Graph-Theoretic Analysis of Structured Peer-to-Peer Networks Benjamin Schiller

4 Data Acquisition - GTNA

Graph-Theoretic Metrics

Analysis Framework

Evaluation

Graph Theory

For the purpose of generating and analyzing topol-
ogy snapshots for well-known network models we cre-
ated the Graph-Theoretic Network Analyzer (GTNA),
an efficient Java-based toolkit for the comprehensive
analysis and generation of complex network graphs.
GTNA, while already including the main metrics that
are used to analyze the complex networks in computer
science today, is simple to extend through a well de-
fined plugin interface for metrics, network descriptions
and network generator models. Throughout this sec-
tion we present the design and simple extensibility of
GTNA, as well as the network models and metrics
that are already implemented. We also describe the
different plot types currently supported by GTNA and show examples of its scalability
and performance.

Graph-Theoretic Network Analyzer

4.1 Framework Components

Due to the variety of network simulators with different input and output formats it is
crucial for an analysis approach to support both, a flexible plugin mechanism for input
data (e.g. a network topology from another simulation or emulation) and an extendable
metrics analysis mechanism. In this subsection the features and design considerations
for handling communication networks, series of snapshots, metrics and plotting are pre-
sented. The following section shows the networks already implemented, followed by the
implemented metrics.
The GTNA framework is divided into four interchangeable modules with distinct tasks.
The network module provides a generation mechanism for network topologies. The metrics
module offers a set of already implemented metrics and an interface for the creation of new
metrics. The series module allows the combination of a set of simulation runs as well as
import mechanisms to read already available traces or simulation data. Aggregated data,
like the average values and the 95% confidence intervals are calculated automatically. The
plotting module wraps the freely available plotting software gnuplot [33].

May 25, 2010 Page 25/131Diploma Thesis in the Peer-to-Peer Networks Group

Graph-Theoretic Analysis of Structured Peer-to-Peer Networks Benjamin Schiller

Network

A new network generator can be created by a class that implements the provided interface
gtna.networks.Network. A set of parameters for the new network may be set according
to it’s needs. For example, the content addressable network (CAN) [25] is already imple-
mented. The important attributes for a CAN are the number of nodes, the dimensions
and the number of realities. Our approach is capable of comparing results for any combi-
nation of the chosen configuration parameters. E.g. a scalability evaluation is performed
by simply scheduling several runs of the same network with growing network size. An
analysis of the effects of multiple realities and dimensions in CAN is performed in the same
way. Of course, other network approaches require a completely different set of parameters.
Nevertheless, with this tool, cross comparisons for different topologies and configurations
of the same network can be performed.

Series

A series provides aggregation and summaries for several simulation runs of the same
network configuration. Averages and confidence intervals for all metrics are calculated
automatically. A series is created with the wrapper class gtna.data.Series. Input data
for a series can be provided in two ways, either by importing available traces, emulations
and simulations or by creating the network topology within GTNA using an implemented
network generator.

Metrics

A basic set of metrics has been developed for GTNA and can be found in the package
gtna.metrics. In order to extend the available metrics the interface gtna.metrics.Metric is
provided. All basic operations needed for the implementation of this interface are already
implemented by the abstract class gtna.metrics.MetricImpl.
The provided metrics can be divided into single-scalar and multi-scalar metrics. The
single-scalars are wrapped by gtna.data.Value and stored in an instance of gtna.data.Singles.
They calculate one value for each graph. Well-known examples are the characteristic path
length and the clustering coefficient. Important multi-scalar metrics are the shortest path
length distribution and the local clustering coefficient which compute an array of values
for every input graph.

Plotting

One of the well-known tools for plotting is the freely available gnuplot software [33]. It is
under active development since 1986 and capable of plotting almost any graph required for
the presentation of various data sets. Nevertheless, gnuplot requires a steep learning curve.
It is command-line driven and hard to learn for novice users. It is not required to know
any gnuplot syntax for plotting a graph with GTNA. All commands needed to run the
software are shielded in the class gtna.plot.GNUPlot. All results can be freely combined
and plotted in one or several plots. If required, even multiple metrics for multiple series
can be condensed in a single file.
The data is plotted using the class gtna.plot.Plot. To plot single-scalar values, a coherent
graph requires several instances of a distinct network. One typical example would be the

May 25, 2010 Page 26/131Diploma Thesis in the Peer-to-Peer Networks Group

Graph-Theoretic Analysis of Structured Peer-to-Peer Networks Benjamin Schiller

development of the characteristic path length with increasing network size.

Implemented Networks

GTNA provides a set of reference network implementations that are located in the package
gtna.networks.canonical. These network topologies, namely ring, star and fully connected,
are helpful when implementing new metrics because their properties are very clear and
metrics easily computable by hand. The package gtna.networks.model contains implemen-
tations for many well known network models such as the random network model by Erdös
and Rényi [7] and Kleinberg’s Small-World model [16]. Table 4.1 shows the implemented
network models and their configuration parameters.

Name Parameters

BarabasiAlbert edges per node
DeBruijn base, dimensions
ErdosRenyi average degree, direction
Gilbert edges, direction
GNC direction, edge back
GNR redirection prob., direction
Kleinberg dimensions, alpha
UnitDisc square size, radius
WattsStrogatz successors, beta

Table 4.1: Network models implemented in GTNA

Table 4.2 shows the better known P2P networks, whose topology generation is provided
by GTNA.

Name Parameters

CAN dimensions, realities
Chord bits per id, successors
Gnutella04 -
Gnutella06 -
Kademlia bits per id, bucket size, alpha, lookups
ODRI base, dimensions, walk length
Pastry bits per id, base
PathFinder virtual peers, neighbors, direction
Symphony long links, successors, retries, direction

Table 4.2: P2P networks implemented in GTNA

The framework also includes methods to read graphs from files supporting a number of
different formats. This includes the Graph Modeling Language (GML) [13] format as
well as the internet mappings provided by the Cooperative Association for Internet Data
Analysis (CAIDA) [31].

May 25, 2010 Page 27/131Diploma Thesis in the Peer-to-Peer Networks Group

Graph-Theoretic Analysis of Structured Peer-to-Peer Networks Benjamin Schiller

Implemented Metrics

Metrics can easily be implemented with the provided interface. Currently, all metrics
that we described in 3 are implemented in GTNA as listed in table 3.6. This includes
the different metrics concerning the vertex degrees, the shortest path and routing length
metrics as well as network fragmentation and clustering coefficient computations.

4.2 Software Architecture

Input

Computation
Generation

Output / InputGraph Data Plot

Series Metric Plotter

Network
Config

Metric
Config

Plot
Config

Figure 4.1: Workflow of GTNA

The workflow of GTNA is shown in figure 4.1. Each of the four modules described above
is used to produce the desired output that serves as input for another one. We describe
this workflow by using two CAN network configurations with different parameters and a
Chord network configuration as an example.

Network Configuration

First, a network configuration is created using a custom set of parameters that depends on
the type of network and its desired configuration. In listing 4.1 two different instances of
CAN network configurations are created. Both contain 500 nodes and use 1 reality. They
differ in the number of dimensions used to span the identifier space. The instance of the
Chord network configuration also uses 500 nodes but requires three different parameters:
the number of bits per identifier, the number of successor links in the identifier space and
a distance parameter.

1 Network can1 = new CAN(500 , 2 , 1) ;

2 Network can2 = new CAN(500 , 3 , 1) ;

3 Network chord = new Chord (500 , 32 , 5 , 3) ;

Listing 4.1: GTNA - creating instances of network configurations

Every network class must implement the interface gtna.networks.Network in order to
provide all methods that are needed for further computations. The basic methods are
already implemented in the abstract class gtna.networks.NetworkImpl that can easily be
extended. The most important part of every network implementation is the method
generate() that returns a network connectivity graph for the given network topology

May 25, 2010 Page 28/131Diploma Thesis in the Peer-to-Peer Networks Group

Graph-Theoretic Analysis of Structured Peer-to-Peer Networks Benjamin Schiller

configuration. This graph is stored in an object of the type gtna.graph.Graph. Every
vertex in the graph is represented by a node object of type gtna.graph.Node. An edge
exists between two nodes if they are connected in the network topology. The structure
of this graph depends on the specific design of every network and is influenced by the
respective configuration parameters given by the network configuration. The generated
graph represent possible snapshots of the considered network topology.

Series

A series of the type gtna.data.Series contains a certain number of graphs generated using
the same network configuration. These graphs share certain properties like the number
of nodes, contain roughly the same number of edges and possess a similar degree dis-
tribution since they are generated using the same topology model and network-specific
configuration. The example in listing 4.2 shows the generation of a series for every network
configuration that we instantiated in listing 4.1.

1 S e r i e s can1Se r i e s = S e r i e s . generate (can1 , 10) ;

2 S e r i e s can2Se r i e s = S e r i e s . generate (can2 , 10) ;

3 S e r i e s cho rdSe r i e s = S e r i e s . generate (chord , 10) ;

Listing 4.2: GTNA - generating series from network configurations

The second parameter in the static method Series.generate states that 10 graphs should
be created for every series using the exact same given network configuration. The slight
differences between the graphs originate from the pseudorandom selection of identifiers
and neighbors in accordance with the rules of the overlay generation algorithm and the
respective configuration parameters.
This concept allows not only for the generation and comparison of different network types.
It also enables us to observe the impact of changes in the network configuration on the
network’s structure and key properties. While a series holds information about the gen-
erated graphs, it is also used to aggregate data. It provides average values and confidence
intervals for the data derived by applying metrics to the encapsulated graphs. These
values are generated by gtna.data.AverageData and gtna.data.ConfidenceData. They are
used in the last step of the workflow to generate plots for a given series or multiple sets
of series.

Metric Computation

In the next step, the implemented metrics generate the data for every graph contained
in the series. Every metric must implement the interface gtna.metrics.Metric and may
extend the abstract class gtna.metrics.MetricImpl which provides basic methods. These
methods are called during the generation of a new series for every graph. The results from
these computations for graph i are then written in the folder **/i/data/ where ** stands
for the series-specific path that depends on the encapsulated network configuration. The
results from single-scalar metrics are combined and written in the file **/i/singles.txt

and a readable version of the whole graph is stored under **/i/graph.txt. The aggregated
values for every series are stored in **/avg/ and **/conf/ and the averages of all single-
scalar metrics are written in the file **/average.txt. Listing 4.3 shows the folder hierarchy
of the first series created in example 4.2. In this case ** is replaces by 500/can-2-1, the
network configuration specific output folder of the network configuration CAN(500, 2, 1).

May 25, 2010 Page 29/131Diploma Thesis in the Peer-to-Peer Networks Group

Graph-Theoretic Analysis of Structured Peer-to-Peer Networks Benjamin Schiller

1 500/

2 can -2-1/

3 0/

4 data/

5 dd.txt

6 ddi.txt

7 ddo.txt

8 ...

9 graph.txt

10 singles.txt

11 1/ ...

12 2/ ...

13 ...

14 avg/

15 dd.txt

16 ddi.txt

17 ddo.txt

18 ...

19 conf/

20 dd.txt

21 ddi.txt

22 ddo.txt

23 ...

24 average.txt

25 output.txt

Listing 4.3: GTNA - file hierarchy and files generated by Series.generate(CAN(500, 2, 1), 10)

Plotting

The average data and confidence intervals as well as the single-scalar values are then used
as input for the various plots. The plotting functionality is provided by gtna.plot.Plot

and uses gtna.plot.GNUPlot as an interface to gnuplot (cf. listing 4.4).

1 S e r i e s [] a l l S e r i e s = new S e r i e s [] { can1Ser i e s , can2Ser i e s ,

2 cho rdSe r i e s } ;
3 Plot . multiAvg (a l l S e r i e s , ” . / p l o t s /mu l t i−avg/”) ;

4 Plot . multiConf (a l l S e r i e s , ” . / p l o t s /mu l t i−con f ”) ;

Listing 4.4: GTNA - plotting data

Plotting single-scalar values is not very useful since the plots would only contain a single
point for every series. It is therefore supported to plot the development of the single-scalar
values during the variation of one parameter, the most common and important one being
the network size. This allows for the comparison of attributes as a network grows and
is crucial for the analysis of network scalability. Multiple sets of different networks can
easily be compared as the example in listing 4.5 demonstrates.

1 S e r i e s [] s1 = S e r i e s . generate (new Network [] { new CAN(500 , 2 , 1) ,

2 new CAN(1000 , 2 , 1) ,

3 new CAN(1500 , 2 , 1) ,

4 new CAN(2000 , 2 , 1) } , 10) ;

5 S e r i e s [] s2 = S e r i e s . generate (new Network [] { new CAN(500 , 3 , 1) ,

6 new CAN(1000 , 3 , 1) ,

7 new CAN(1500 , 3 , 1) ,

May 25, 2010 Page 30/131Diploma Thesis in the Peer-to-Peer Networks Group

Graph-Theoretic Analysis of Structured Peer-to-Peer Networks Benjamin Schiller

8 new CAN(2000 , 3 , 1) } , 10) ;

9 S e r i e s [] [] s = new S e r i e s [] [] { s1 , s2 } ;
10 Plot . s ing l e sAvg (s , ” . / p l o t s / s i n g l e s −avg/”) ;

11 Plot . s i ng l e sCon f (s , ” . / p l o t s / s i n g l e s −con f /”) ;

Listing 4.5: GTNA - plotting single-scalar values

Class Hierarchy

The class hierarchy of GTNA is mostly structured by the different modules and is listed
in table 4.3.

Package Description

gtna.data series, data generators
gtna.graph graph, node, edge
gtna.io input and output
gtna.metrics implemented metrics, interface
gtna.networks implemented networks, interface
gtna.plot plotter, gnuplot interface
gtna.util utilities

Table 4.3: Packages of the GTNA implementation

4.3 Configuration and Extension

In this subsection we give a brief overview how GTNA can be extended by creating new
metrics and network configurations. We also show how to properly configure them to
allow for a seamless integration in the existing workflow.

Network configurations

Since the network interface requires the implementation of several methods, the abstract
class gtna.networks.NetworkImpl implements most of them and can be used by extending
it. Its constructor only has four parameters: a network-specific key for the identification
of the metric, the desired network size, an array containing the parameter keys and an
array with the specific configuration parameters. The only method that needs to be
implemented for every single network is the generation of a specific network topology
graph by applying the respective network design while considering the given parameters.
The following example in listing 4.6 implements the network OneEdge that contains the
given number of nodes and creates only one edge between two specified nodes. It requires
the standard parameter nodes and the indices of the two nodes that should be connected
by an edge.

1 pub l i c c l a s s OneEdge extends NetworkImpl implements Network {
2 pr i va t e i n t n1 ;

3 pr i va t e i n t n2 ;

4

5 pub l i c NoEdges (i n t nodes , i n t n1 , i n t n2) {

May 25, 2010 Page 31/131Diploma Thesis in the Peer-to-Peer Networks Group

Graph-Theoretic Analysis of Structured Peer-to-Peer Networks Benjamin Schiller

6 super (”OE” , nodes ,

7 new St r ing [] { ”N1” , ”N2” } ,
8 new St r ing [] { n1 + ”” , n2 + ”” }) ;
9 t h i s . n1 = n1 ;

10 t h i s . n2 = n2 ;

11 }
12

13 pub l i c Graph generate () {
14 Node [] nodes = Node . i n i t (t h i s . nodes ()) ;

15 i f (n1 != n2 && th i s . n1 < t h i s . nodes () && n2 < t h i s . nodes ()) {
16 Edges edges = new Edges (nodes , 1) ;

17 Edge edge = new Edge (nodes [t h i s . n1] , nodes [t h i s . n2]) ;

18 edges . add (edge) ;

19 edges . f i l l () ;

20 }
21 r e turn new Graph (t h i s . d e s c r i p t i o n () , nodes) ;

22 }
23 }

Listing 4.6: GTNA - implementation of a new network generator

The unique key OE is used to obtain certain values from the configuration file such as the
network’s name, its output folder and names for every parameter. The associated part of
a configuration file is depicted in listing 4.7.

1 OE_NAME = One Edge

2 OE_FOLDER = oneEdge

3 OE_N1_NAME = Source Node

4 OE_N2_NAME = Destination Node

Listing 4.7: GTNA - configuration of a network generator

All contents of the configuration file can be accessed using the class gtna.util.Config. By
default, the configuration file is read from ./conf.properties but can be read from another
source at any time using the static method Config.init(String filename). During runtime,
single configuration items can be overwritten using the method Config.overwrite(String

key, String value). To reset them, the method Config.reset(String key) is provided.

Metrics

Creating a new metric and including it in the framework requires the implementation of
the interface gtna.metrics.Metric as well as the addition of certain parameters to the con-
figuration file. Analog to the network configurations, abstract class gtna.metrics.MetricImpl

implements most of these methods. The only method besides writing the multi-scalar data
into files and returning an array of single-scalar values that needs to be implemented for
every metric is the computation of the metric-specific data for a given graph. An example
is given by the implementation of the simple metric called NodesOfDegree in listing 4.8.
It computes the simple metric Nodes of Degree (NOD) that counts the number of nodes
for every degree as well as the single-scalar metric Degree of Most Nodes (DOMN) which
is defined asa the degree of the largest group of nodes.

1 pub l i c c l a s s NodesOfDegree extends MetricImpl implements Metric {
2 pr i va t e i n t [] nod ;

3 pr i va t e i n t domn ;

4

May 25, 2010 Page 32/131Diploma Thesis in the Peer-to-Peer Networks Group

Graph-Theoretic Analysis of Structured Peer-to-Peer Networks Benjamin Schiller

5 pub l i c NodesOfDegree () {
6 super (”NOD”) ;

7 }
8

9 pub l i c void computeData (Graph g) {
10 // compute nodesOfDegree metr i c s

11 t h i s . nod = new in t [g . maxDegree + 1] ;

12 f o r (i n t i =0; i<g . nodes . l ength ; i++) {
13 Node n = g . nodes [i] ;

14 i n t degree = n . in . l ength + n . out . l ength ;

15 t h i s . nod [degree]++;

16 }
17 // compute degreeOfMostNodes metr ic

18 i n t max = th i s . nod [0] ;

19 t h i s . domn = 0 ;

20 f o r (i n t i =0; i<t h i s . nod . l ength ; i++) {
21 i f (t h i s . nod [i] > max) {
22 max = th i s . nod [i] ;

23 t h i s . domn = i ;

24 }
25 }
26 }
27

28 pub l i c void writeData (S t r ing f o l d e r) {
29 DataWriter . wr i t e (”NOD NOD” , f o l d e r , t h i s . nod) ;

30 }
31

32 pub l i c Value [] getValues () {
33 Value domn = new Value (”NODDOMN” , t h i s . domn) ;

34 r e turn new Value [] { domn } ;
35 }
36 }

Listing 4.8: GTNA - implementation of a new metric

To allow the super-class MetricImpl as well as the Series instances to access the new
metric, it needs to be configured properly as shown in listing 4.9. Besides the class and
the metric’s name, lists for all single- and multi-scalar metrics and plots as well as names
need to be included. In addition, multi-scalar metrics also require a filename.

1 NOD_CLASS = NodesOfDegree

2 NOD_NAME = Nodes of Degree

3 NOD_DATA_KEYS = NOD_NOD

4 NOD_SINGLES_KEYS = NOD_DOMN

5 NOD_DATA_PLOTS = NOD_NOD

6 NOD_SINGLES_PLOTS = NOD_DOMN

7

8 NOD_NOD_DATA_NAME = Nodes of Degree

9 NOD_NOD_DATA_FILENAME = nod

10

11 NOD_DOMN_SINGLE_NAME = Degree of Most Nodes

Listing 4.9: GTNA - configuration of a metric

To include an implemented and properly configured metric into the workflow of GTNA, it
needs to be added to the set of metrics. Again, the unique key is used and simply added
to the entry METRICS in the configuration file as depicted in listing 4.10.

May 25, 2010 Page 33/131Diploma Thesis in the Peer-to-Peer Networks Group

Graph-Theoretic Analysis of Structured Peer-to-Peer Networks Benjamin Schiller

1 ## METRICS = CC , DD , RCC , RL , SPL

2 METRICS = CC , DD , RCC , RL , SPL , NOD

Listing 4.10: GTNA - including a metric in the workflow

Plots

Every plot requires a number of entries in the configuration file such as filename, title
and labels for x- and y-axis. The DATA entry contains a list of all metrics that should be
contained in the plot. If only a single metric is to be plotted, this list contains only this
one key. A configuration for the nodes of degree metric is given in listing 4.11.

1 NOD_NOD_PLOT_DATA = NOD_NOD

2 NOD_NOD_PLOT_FILENAME = nod

3 NOD_NOD_PLOT_TITLE = Nodes of Degree

4 NOD_NOD_PLOT_X = Degree d

5 NOD_NOD_PLOT_Y = #(nodes(d))

Listing 4.11: GTNA - configuration of a plot

To combine multiple metrics in one plot they all need to be added to the data list. The
following example in listing 4.12 shows the configuration for a single-scalar plot that
combines the degree of most nodes with the maximum and minimum node degree. The
latter ones are computed by the degree distribution metric.

1 DOMN_MIN_MAX_PLOT_DATA = NOD_DOMN , DD_MIN , DD_MAX

2 DOMN_MIN_MAX_PLOT_FILENAME = domn -min -max

3 DOMN_MIN_MAX_PLOT_TITLE = DOMN / D-min / D-max

4 DOMN_MIN_MAX_PLOT_Y = domn / d-min / d-max

Listing 4.12: GTNA - combination of multiple metrics in one plot

4.4 Plot types

The most common use of our framework so far has been the analysis of single networks
as well as their comparison to other networks, common network models and differing
configurations of the same network. The results from all these different networks that are
encapsulated in instances of series can be combined freely to generate plots with the data
from all kinds of networks. Also, we can combine multiple metrics in the same plot to
compare them and give evidence for possible correlations. We implemented three different
types of plots that are useful in different szenarios: plots of multi-scalar metrics, plots of
single-scalar metrics and the so-called plots by edges.

Multi-scalar plots

Multi-scalar metrics compute an array of values for every graph. Therefore, we can com-
bine a list of different networks in one plot while the data set of every network is repre-
sented by a set of average values or confidence intervals. Figure 4.2(a) shows a plot of the
shortest path length combined with the routing path length of different configurations
of the Symphony network. These plots allows us to compare the respective properties

May 25, 2010 Page 34/131Diploma Thesis in the Peer-to-Peer Networks Group

Graph-Theoretic Analysis of Structured Peer-to-Peer Networks Benjamin Schiller

given by the used multi-scalar metrics. In the presented example, we combined the short-
est path length with the routing length distribution to depict the degree of how much
the particular configurations utilize the underlying network topology during the routing
procedure.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25 30

P
R

(r
l)
 /
 P

S
P

L
(l
)

Routing Length rl / Shortest Path Length l

Routing Length Distribution vs. Shortest Path Length Distribution

RLD - Symphony - 20000 (ldl = 4, f = 4, k = 1000, b = true, r = bidirectional)
SPLD - Symphony - 20000 (ldl = 4, f = 4, k = 1000, b = true, r = bidirectional)

RLD - Symphony - 20000 (ldl = 8, f = 4, k = 1000, b = true, r = bidirectional)
SPLD - Symphony - 20000 (ldl = 8, f = 4, k = 1000, b = true, r = bidirectional)
RLD - Symphony - 20000 (ldl = 12, f = 4, k = 1000, b = true, r = bidirectional)

SPLD - Symphony - 20000 (ldl = 12, f = 4, k = 1000, b = true, r = bidirectional)

(a) Routing vs. shortest path length distribution

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

d
ia

m

Nodes

Diameter

CAN - x (d = 2, r = 1)
CAN - x (d = 3, r = 1)
CAN - x (d = 4, r = 1)
CAN - x (d = 5, r = 1)
CAN - x (d = 6, r = 1)

(b) Development of the diameter

Figure 4.2: Single- and multi-scalar metrics for different network configurations

Single-scalar plots

Single-scalar metrics return only a single value for every input graph. This allows a more
coarse grained comparison between much more different network configurations than the
plots of multi-scalar metrics. The values from multiple configurations can therefore be
combined in a single set that is represented as a single item in a single-scalar plot. For
example, we can change one single parameter of a network configuration and observe its
impact on the respective graph metric. In figure 4.2(b) we give an example of such a
single-scalar plot. The five sets of CAN network configurations have the same number
of realities but differ in the number of dimensions. Every set contains multiple config-
urations with network sizes between 1,000 and 20,000 nodes. Since the network size is
the distinguishing parameter inside of each set, it is plotted on the x-axis. Thereby, the
plot shows the development of the diameter of a CAN system during network growth for
different configurations.

Plots by edges

The quality of a network topology is determined by the tradeoff between the number
of edges per node and the values of examined graph-theoretic properties. Obviously, a
network topology A is classified higher in respect to routing efficiency than topology B
if they exhibit the same characteristic routing length but A only requires 80% of B’s
connections to achieve that. The single- and multi-scalar plots presented so far cannot
display this ratio as they differentiate by configuration parameters only. Therefore we
also implemented a type of plot that distinguishes network configurations by the resulting
number of edges in the network graph rather that the configuration parameters. In these
plots the number of edges in the respective network configuration is projected on the
x-axis as shown by the example in figure 4.3.

May 25, 2010 Page 35/131Diploma Thesis in the Peer-to-Peer Networks Group

Graph-Theoretic Analysis of Structured Peer-to-Peer Networks Benjamin Schiller

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

cr
l

Edges

Characteristic Routing Length

Chord - 20000 (m = 32, r = 0, d = x)
Chord - 20000 (m = 32, r = 10, d = x)
Chord - 20000 (m = 32, r = 20, d = x)
Chord - 20000 (m = 32, r = 30, d = x)
Chord - 20000 (m = 32, r = 40, d = x)

Figure 4.3: Characteristic routing length for different configuration of the Chord network

This kind of plot also allows for a comparison of topology sets that don’t even share a
parameter to differentiate them. In the given example, the characteristic routing length
of different network topologies with varying configurations is combined in one plot. This
allows for a very precise evaluation of how efficiently different networks and their respective
configurations use the additional edges and take advantage of them.

4.5 Runtime and Memory Usage

Graph-theoretic topology analysis for complex networks like current P2P networks have to
be performed with network sizes of several thousand nodes. The P2P network Tapestry [34]
for example was simulated with 4096 nodes, Chord [29] was evaluated with networks con-
taining 10.000 nodes and the analysis of Symphony [20] was performed with up to 16.384
nodes. Newer complex networks might even require more nodes for a significant analysis.
In order to provide a network tool for daily usage, one requirement is to have GTNA
running on regular desktop computers.
For the evaluation of GTNA we used a 2.4 GHz Intel Core 2 Duo processor running MAC
OS 10.5.8 with 2 GB of memory. Besides the time needed for calculating the desired
metrics, the required amount of memory limits the scalability of GTNA. Our goal was
to analyze network topologies with more than 20.000 nodes, requiring less than 2 GB of
memory. We generated ErdösRényi random graphs with an average degree of 20, 30, 40
and 50 for the evaluation of GTNA. Currently, GTNA is implemented in Java. We used
Java version 1.5.0 22 for all experiments.
We have chosen the shortest path length metric for the runtime evaluation, since it is
the most CPU consuming metric currently implemented and therefore determines the
runtime of the whole analysis. Figure 4.4(a) shows the runtime in seconds needed for
the computation of the shortest path length metrics for network sizes between 1.000 and
20.000. The runtime highly depends on the number of nodes, but even a network of 20.000
nodes with average degree of 50 is analyzed in about 3 minutes. The runtime increases
exponentially due to the complexity of the shortest path length computation.
Figure 4.4(b) shows the required memory for the computation of all metrics for the de-
scribed networks topologies. While the memory consumption growth linearly with the
network size, only 75 MB are needed for the analysis of an ErdösRényi random graph
with 20.000 nodes an an average degree of 50.

May 25, 2010 Page 36/131Diploma Thesis in the Peer-to-Peer Networks Group

Graph-Theoretic Analysis of Structured Peer-to-Peer Networks Benjamin Schiller

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

R
u
n
tim

e
 (

in
 s

e
c)

Nodes

Runtime: Shortest Path Length

Erdos Renyi - x (d = 20.0, b = true)
Erdos Renyi - x (d = 30.0, b = true)
Erdos Renyi - x (d = 40.0, b = true)
Erdos Renyi - x (d = 50.0, b = true)

(a) Runtime of the shortest path length metric

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

M
e
m

o
ry

 u
sa

g
e
 (

in
 M

B
)

Nodes

Memory usage

Erdos Renyi - x (d = 20.0, b = true)
Erdos Renyi - x (d = 30.0, b = true)
Erdos Renyi - x (d = 40.0, b = true)
Erdos Renyi - x (d = 50.0, b = true)

(b) Memory usage for all metrics

Figure 4.4: Runtime and memory usage of GTNA for ErdösRényi random graphs

Metric 1.000 2.500 5.000 7.500 10.000 12.500 15.000 17.500 20.000

Clustering Coefficient 0.356 0.972 1.991 3.139 4.322 5.785 7.158 8.074 9.542
Degree Distribution 0.000 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.003
Network Fragmentation (U) 0.173 0.489 1.078 1.896 3.060 4.015 5.207 6.867 7.931
Network Fragmentation (B) 0.154 0.361 0.738 1.151 1.690 2.067 2.569 3.023 3.628
Rich Club Connectivity 0.115 0.722 2.997 6.931 12.868 21.816 30.205 43.285 56.119
Shortest Path Length 0.307 2.126 9.511 22.543 42.311 69.591 102.951 146.539 190.755
Memory Usage in MB 7.491 16.704 31.91 47.041 34.228 42.552 46.281 63.093 66.57

Table 4.4: Runtime of all metrics for ErdösRényi random graph with an average degree 50

The runtime for every metric and the cumulative memory usage of all computations
for an ErdösRényi graph of average degree 50 and different sizes is given in table 4.4.
These measurements clearly show the usability of GTNA on regular desktop computers.
Furthermore, the limiting factor was not the CPU, but the required memory. The available
2 GB were completely consumed by a simulation with 600.000 nodes which required 1,9
GB of RAM.

May 25, 2010 Page 37/131Diploma Thesis in the Peer-to-Peer Networks Group

