Deep Neural Networks (DNNs) have successfully been used to replace classical DBMS components such as indexes or query optimizers with learned counterparts. However, commercial vendors are still hesitating to put DNNs into their DBMS stack since these models not only lack explainability but also have other significant downsides such as the requirement for high amounts of training data resulting from the need to learn all behavior from data.
In this project, we investigate alternative approaches that incorporate domain knowledge to obtain more reliable learned DBMS components requiring less training data. While the high-level design of the DBMS component is still specified by code, we optimize it for a particular workload and hardware using differentiable programming. Differentiable programming is a recent shift in machine learning away from the direction taken by DNNs towards simpler models that take advantage of the problem structure. We successfully applied this technique to learned indexing and cost modeling for query optimization.
Researchers
Name | Contact | |
---|---|---|
| Dr. rer. nat. Benjamin Hilprecht | |
| Dr.-Ing. Tiemo Bang Doctoral Researcher | |
| Dr. rer. nat. Muhammad El-Hindi | muhammad.el-hindi@cs.tu-... S2|02 E115 |
| Dr. rer. nat. Benjamin Hättasch Postdoctoral Researcher | benjamin.haettasch@cs.tu-... +49 631 205752900 S2|02 E112 |
| Dr.-Ing. Robin Rehrmann | |
| Dr. rer. nat. Lasse Thostrup | |
| Dr. rer. nat. Tobias Ziegler | tobias.ziegler@cs.tu-... +49 6151 16-27816 S2|02 E115 |
Publications
Error on loading data
An error has occured when loading publications data from TUbiblio. Please try again later.
-
{{ year }}
-
; {{ creator.name.family }}, {{ creator.name.given }}{{ publication.title }}.
; {{ editor.name.family }}, {{ editor.name.given }} (eds.); ; {{ creator }} (Corporate Creator) ({{ publication.date.toString().substring(0,4) }}):
In: {{ publication.series }}, {{ publication.volume }}, In: {{ publication.book_title }}, In: {{ publication.publication }}, {{ publication.journal_volume}} ({{ publication.number }}), ppp. {{ publication.pagerange }}, {{ publication.place_of_pub }}, {{ publication.publisher }}, {{ publication.institution }}, {{ publication.event_title }}, {{ publication.event_location }}, {{ publication.event_dates }}, ISSN {{ publication.issn }}, e-ISSN {{ publication.eissn }}, ISBN {{ publication.isbn }}, DOI: {{ publication.doi.toString().replace('http://','').replace('https://','').replace('dx.doi.org/','').replace('doi.org/','').replace('doi.org','').replace("DOI: ", "").replace("doi:", "") }}, Official URL, {{ labels[publication.type]?labels[publication.type]:publication.type }}, {{ labels[publication.pub_sequence] }}, {{ labels[publication.doc_status] }} - […]
-
Number of items in this list: >{{ publicationsList.length }}
Only the {{publicationsList.length}} latest publications are displayed here.