Learned Partitioning

Cloud vendors provide ready-to-use distributed DBMS solutions as a service. While the provisioning of a DBMS is usually fully automated, customers typically still have to make important design decisions which were traditionally made by the database administrator such as finding an optimal partitioning scheme for a given database schema and workload.

In this project, we learn how to partition a distributed DBMS for OLAP-style workloads using Deep Reinforcement Learning (DRL). The main idea is that a DRL agent learns the cost tradeoffs of different partitioning schemes and can thus automate the partitioning decision. In the evaluation, we show that our advisor is able to find non-trivial partitionings for a wide range of workloads and outperforms more classical approaches for automated partitioning design.

Researchers

  Name Contact
Dr. rer. nat. Benjamin Hilprecht

Publications

Loading...
Loading data from TUbiblio…

Error on loading data

An error has occured when loading publications data from TUbiblio. Please try again later.

  • {{ year }}

    • ({{ publication.date.toString().substring(0,4) }}):
      {{ publication.title }}.
      In: {{ publication.series }}, {{ publication.volume }}, In: {{ publication.book_title }}, In: {{ publication.publication }}, {{ publication.journal_volume}} ({{ publication.number }}), ppp. {{ publication.pagerange }}, {{ publication.place_of_pub }}, {{ publication.publisher }}, {{ publication.institution }}, {{ publication.event_location }}, {{ publication.event_dates }}, ISSN {{ publication.issn }}, e-ISSN {{ publication.eissn }}, ISBN {{ publication.isbn }}, {{ labels[publication.type]?labels[publication.type]:publication.type }}
    • […]

Number of items in this list: {{ publicationsList.length }}
Only the {{publicationsList.length}} latest publications are displayed here.

View complete list at TUbiblio View this list at TUbiblio