Alexander Seeliger

Dr.-Ing. Alexander Seeliger

+49 6151 16-23190
+49 6151 16-23202

Hochschulstraße 10
64289 Darmstadt

Office: S2|02 A112

Research Interests

  • Process Mining of Business Processes
  • Big Data Processing and Mining
  • Knowledge Extraction of Unstructured Data
  • Machine Learning Methods and Techniques

Current / Past Research Projects

  • KI.RPA: Intelligent Robotic Process Automation (> 2018)
    The goal of the project is to develop a tool that companies can use to create virtual employee pools based on robotic process automation, which support human employees in recurring routine tasks.
  • DRUP: Deep Reasoning about Business Processes (2017 – 2018)
    The goal of the project is to develop methods that extract valuable knowledge in event logs of which the structure is not known before analysis.
  • PASAP: Process Analytics: Entwicklung von Softwaretechnologien für einen neuartigen Ansatz in der Prozessanalyse (2015 – 2017)



Supervised Theses (ongoing and finished)

  • Detection Concept Drift in Processes using Change Point Detection
  • Development of a Root-Cause Analysis Framework for Process Executions
  • Prozessgraphoptimierung mittels Motiv -basierter Graphadaption
  • Business Rule Framework für Spark Streaming
  • Intelligenter Browser für Process Mining
  • Trace Clustering using Event Attributes from Event Logs
  • Reduktion von Unstrukturiertheit in Prozessmodellen im Kontext von Prozess Mining
  • Multivariante Root-Cause-Analyse in Process Mining
  • Rule Checking in Process Models using the Taint Flow Algorithm
  • Intelligent and Systematic Browsing through Process Mining Data
  • Trace Clustering mit Expertenwissen
  • Case2vec: Distributed Representations of Event Log Traces for Process Clustering
  • Visualisierung von Prozessmodellen in Augmented Reality
  • Zeitbasierte Erkennung von Ausreißern und Abweichungen im Prozess mittels Machine Learning

Please contact me if you are interested in writing a Bachelor or Master thesis.


Exportieren als [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Gruppiere nach: Publikationsjahr | Typ des Eintrags | Keine Gruppierung
Springe zu: 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2012
Anzahl der Einträge: 18.


Luettgen, Stefan ; Seeliger, Alexander ; Nolle, Timo ; Mühlhäuser, Max (2021):
Case2vec : Advances in Representation Learning for Business Processes.
In: Lecture Notes in Business Information Processing, 406, In: Process Mining Workshops, S. 162-174,
Springer, 1st International Workshop on Leveraging Machine Learning in Process Mining (ML4PM), virtual Conference, 05.-08.10.2020, ISBN 978-3-030-72692-8,
DOI: 10.1007/978-3-030-72693-5_13,


Seeliger, Alexander (2020):
Intelligent Computer-assisted Process Mining.
Darmstadt, Technische Universität Darmstadt,
DOI: 10.25534/tuprints-00011915,

Nolle, Timo ; Seeliger, Alexander ; Thoma, Nils ; Mühlhäuser, Max Dustdar, Schahram ; Yu, Eric ; Salinesi, Camille ; Rieu, Dominique ; Pant, Vik (Hrsg.) (2020):
DeepAlign: Alignment-Based Process Anomaly Correction Using Recurrent Neural Networks.
S. 319-333, Springer, 32nd International Conference on Advanced Information Systems Engineering (CAiSE 2020), virtual Conference, 08.-12.06., ISSN 0302-9743, ISBN 978-3-030-49434-6,
DOI: 10.1007/978-3-030-49435-3_20,


Nolle, Timo ; Luettgen, Stefan ; Seeliger, Alexander ; Mühlhäuser, Max (2019):
BINet: Multi-perspective business process anomaly classification.
In: Information Systems, S. 101458. Elsevier ScienceDirect, ISSN 0306-4379,
DOI: 10.1016/,

Sanchez Guinea, Alejandro ; Seeliger, Alexander ; Pejovic, Usman and Scholl ; Naeem, Usman ; Scholl, Philipp ; Mihale-Wilson, Cristina ; Di Lascio, Elena ; Azam, Muhammad Awais ; Kuo, Pei-Yi (Patricia) ; Mühlhäuser, Max ; Meurisch, Christian (2019):
UPA'19: 4th International Workshop on Ubiquitous Personal Assistance.
In: UbiComp/ISWC '19 Adjunct, In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, S. 1099-1101,
New York, NY, USA, ACM, ISBN 978-1-4503-6869-8,
DOI: 10.1145/3341162.3347755,

Seeliger, Alexander ; Sánchez Guinea, Alejandro ; Nolle, Timo ; Mühlhäuser, Max (2019):
ProcessExplorer: Intelligent Process Mining Guidance.
S. 216-231, Springer, 17th International Conference on Business Process Management (BPM 2019), Wien, Austria, 01.-06.09., ISBN 978-3-030-26618-9,
DOI: 10.1007/978-3-030-26619-6_15,

Seeliger, Alexander ; Ratzke, Maximilian ; Nolle, Timo ; Mühlhäuser, Max Burattin, Andrea ; Polyvyanyy, Artem ; Zelst, Sebastiaan van (Hrsg.) (2019):
ProcessExplorer: Interactive Visual Exploration of Event Logs with Analysis Guidance.
In: 1st International Conference on Process Mining - Demo Track, S. 24-27,
Aachen, Germany, ICPMD 2019, Aachen, Germany, June 24-26, 2019, [Konferenzveröffentlichung]


Seeliger, Alexander ; Nolle, Timo ; Mühlhäuser, Max Weske, Mathias ; Montali, Marco ; Weber, Ingo ; vom Brocke, Jan (Hrsg.) (2018):
Finding Structure in the Unstructured: Hybrid Feature Set Clustering for Process Discovery.
In: 16, In: Business Process Management, 11080, S. 288-304,
Cham, Springer International Publishing, Sydney, Australia, DOI: 10.1007/978-3-319-98648-7_17,

Seeliger, Alexander ; Nolle, Timo ; Mühlhäuser, Max (2018):
ProcessExplorer: An Interactive Visual Recommendation System for Process Mining.
In: KDD 2018 Workshop on Interactive Data Exploration and Analytics,
London, UK, [Konferenzveröffentlichung]

Nolle, Timo ; Seeliger, Alexander ; Mühlhäuser, Max Weske, Mathias ; Montali, Marco ; Weber, Ingo ; vom Brocke, Jan (Hrsg.) (2018):
BINet: Multivariate Business Process Anomaly Detection Using Deep Learning.
11080, S. 271-287, Springer, Sydney, Australia, September 9-14, 2018, ISBN 978-3-319-98647-0,
DOI: 10.1007/978-3-319-98648-7_16,

Nolle, Timo ; Luettgen, Stefan ; Seeliger, Alexander ; Mühlhäuser, Max (2018):
Analyzing business process anomalies using autoencoders.
In: Machine Learning, ISSN 0885-6125,
DOI: 10.1007/s10994-018-5702-8,


Seeliger, Alexander ; Stein, Michael ; Mühlhäuser, Max Teniente, Ernest ; Weidlich, Matthias (Hrsg.) (2017):
Can We Find Better Process Models? Process Model Improvement using Motif-based Graph Adaptation.
In: Business Process Management Workshops, 308, S. 230-242,
Springer International Publishing, Barcelona, Spain, DOI: 10.1007/978-3-319-74030-0_17,

Seeliger, Alexander ; Nolle, Timo ; Mühlhäuser, Max Mühlhäuser, Max ; Zehbold, Cornelia (Hrsg.) (2017):
Detecting Concept Drift in Processes using Graph Metrics on Process Graphs.
In: S-BPM ONE '17, 9, In: Proceedings of the 9th International Conference on Subject-oriented Business Process Management (S-BPM-ONE),
New York, NY, USA, ACM, Darmstadt, Germany, ISBN 978-1-4503-4862-1/17/03,
DOI: 10.1145/3040565.3040566,


Seeliger, Alexander ; Nolle, Timo ; Schmidt, Benedikt ; Mühlhäuser, Max (2016):
Process Compliance Checking using Taint Flow Analysis.
37, In: Proceedings of the 37th International Conference on Information Systems (ICIS), S. 1-18,
AIS, Dublin, Ireland, [Konferenzveröffentlichung]

Nolle, Timo ; Seeliger, Alexander ; Mühlhäuser, Max Calders, Toon ; Ceci, Michelangelo ; Malerba, Donato (Hrsg.) (2016):
Unsupervised Anomaly Detection in Noisy Business Process Event Logs Using Denoising Autoencoders.
In: Discovery Science: 19th International Conference, DS 2016, Bari, Italy, Proceedings, S. 442-456,
Calders, Toon Ceci, Michelangelo Malerba, Donato, Bari, Italy, ISBN 978-3-319-46307-0,
DOI: 10.1007/978-3-319-46307-0_28,

Seeliger, Alexander ; Schmidt, Benedikt ; Schweizer, Immanuel ; Mühlhäuser, Max Nichols, Jeffrey ; Mahmud, Jalal ; O'Donovan, John ; Conati, Cristina ; Zancanaro, Massimo (Hrsg.) (2016):
What Belongs Together Comes Together. Activity-centric Document Clustering for Information Work.
21, In: Proceedings of the 21th International Conference on Intelligent User Interfaces, S. 60-70,
ACM, Sonoma, CA, USA, ISBN 978-1-4503-4137-0,
DOI: 10.1145/2856767.2856777,


Meurisch, Christian ; Seeliger, Alexander ; Schmidt, Benedikt ; Schweizer, Immanuel ; Kaup, Fabian ; Mühlhäuser, Max (2015):
Upgrading Wireless Home Routers for Enabling Large-scale Deployment of Cloudlets.
In: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 162, In: Mobile Computing, Applications, and Services : 7th International Conference, MobiCASE 2015, S. 12-29,
Berlin, Springer, Berlin, Germany, November 12-13, 2015, ISBN 978-3-319-29002-7,
DOI: 10.1007/978-3-319-29003-4_2,


Seeliger, Alexander ; Paulheim, Heiko (2012):
A Semantic Browser for Linked Open Data.
Semantic Web Challenge, [Konferenzveröffentlichung]

Diese Liste wurde am Fri Apr 16 06:29:13 2021 CEST generiert.

go to list